Darab Ghadimi, Regina Fölster-Holst, Sophia Blömer, Michael Ebsen, Christoph Röcken, Jumpei Uchiyama, Shigenobu Matsuzaki, Wilhelm Bockelmann
{"title":"Intricate Crosstalk Between Food Allergens, Phages, Bacteria, and Eukaryotic Host Cells of the Gut-skin Axis.","authors":"Darab Ghadimi, Regina Fölster-Holst, Sophia Blömer, Michael Ebsen, Christoph Röcken, Jumpei Uchiyama, Shigenobu Matsuzaki, Wilhelm Bockelmann","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial and food allergens are associated with immune-mediated food allergies via the gut-skin axis. However, there has been no data on the potential use of phages to rescue this pathological process. A human triple cell co-culture model incorporating colonocytes (T84 cells), macrophages (THP-1 cells), and hepatocytes (Huh7 cells) was established and infected with <i>Pseudomonas aeruginosa</i> PAO1 (P.a PAO1) in the absence or presence of its KPP22 phage in Dulbecco's Modified Eagle's Medium (DMEM), DMEM+ ovalbumin (OVA), or DMEM+β-casein media. The physiological health of cells was verified by assessing cell viability and Transepithelial electrical resistance (TEER) across the T84 monolayer. The immune response of cells was investigated by determining the secretions of IL-1β, IL-8, IL-22, and IL-25. The ability of P.a PAO1 to adhere to and invade T84 cells was evaluated. The addition of either OVA or β-casein potentiated the P.a PAO1-elicited secretion of cytokines. The viability and TEER of the T84 monolayer were lower in the P.a PAO1+OVA group compared to the P.a PAO1 alone and PAO1+β-casein groups. OVA and β-casein significantly increased the adherence and invasion of P.a PAO1 to T84 cells. In the presence of the KPP22 phage, these disruptive effects were abolished. These results imply that: (1) food allergens and bacterial toxic effector molecules exacerbate each other's disruptive effects; (2) food allergen and bacterial signaling at the gut-skin mucosal surface axis depend on a network of bacteria-phage-eukaryotic host interactions; and (3) phages are complementary for the evaluation of pathobiological processes that occur at the interface between bacteria, host cellular milieu, and food antigens because phages intervene in P.a PAO1-, OVA-, and β-casein-derived inflammation.</p>","PeriodicalId":48617,"journal":{"name":"Yale Journal of Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yale Journal of Biology and Medicine","FirstCategoryId":"5","ListUrlMain":"","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial and food allergens are associated with immune-mediated food allergies via the gut-skin axis. However, there has been no data on the potential use of phages to rescue this pathological process. A human triple cell co-culture model incorporating colonocytes (T84 cells), macrophages (THP-1 cells), and hepatocytes (Huh7 cells) was established and infected with Pseudomonas aeruginosa PAO1 (P.a PAO1) in the absence or presence of its KPP22 phage in Dulbecco's Modified Eagle's Medium (DMEM), DMEM+ ovalbumin (OVA), or DMEM+β-casein media. The physiological health of cells was verified by assessing cell viability and Transepithelial electrical resistance (TEER) across the T84 monolayer. The immune response of cells was investigated by determining the secretions of IL-1β, IL-8, IL-22, and IL-25. The ability of P.a PAO1 to adhere to and invade T84 cells was evaluated. The addition of either OVA or β-casein potentiated the P.a PAO1-elicited secretion of cytokines. The viability and TEER of the T84 monolayer were lower in the P.a PAO1+OVA group compared to the P.a PAO1 alone and PAO1+β-casein groups. OVA and β-casein significantly increased the adherence and invasion of P.a PAO1 to T84 cells. In the presence of the KPP22 phage, these disruptive effects were abolished. These results imply that: (1) food allergens and bacterial toxic effector molecules exacerbate each other's disruptive effects; (2) food allergen and bacterial signaling at the gut-skin mucosal surface axis depend on a network of bacteria-phage-eukaryotic host interactions; and (3) phages are complementary for the evaluation of pathobiological processes that occur at the interface between bacteria, host cellular milieu, and food antigens because phages intervene in P.a PAO1-, OVA-, and β-casein-derived inflammation.
期刊介绍:
The Yale Journal of Biology and Medicine (YJBM) is a graduate and medical student-run, peer-reviewed, open-access journal dedicated to the publication of original research articles, scientific reviews, articles on medical history, personal perspectives on medicine, policy analyses, case reports, and symposia related to biomedical matters. YJBM is published quarterly and aims to publish articles of interest to both physicians and scientists. YJBM is and has been an internationally distributed journal with a long history of landmark articles. Our contributors feature a notable list of philosophers, statesmen, scientists, and physicians, including Ernst Cassirer, Harvey Cushing, Rene Dubos, Edward Kennedy, Donald Seldin, and Jack Strominger. Our Editorial Board consists of students and faculty members from Yale School of Medicine and Yale University Graduate School of Arts & Sciences. All manuscripts submitted to YJBM are first evaluated on the basis of scientific quality, originality, appropriateness, contribution to the field, and style. Suitable manuscripts are then subject to rigorous, fair, and rapid peer review.