Genetic diversity, stress tolerance and phytobeneficial potential in rhizobacteria of Vachellia tortilis subsp. raddiana.

IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY
Mohamed Hnini, Jamal Aurag
{"title":"Genetic diversity, stress tolerance and phytobeneficial potential in rhizobacteria of Vachellia tortilis subsp. raddiana.","authors":"Mohamed Hnini, Jamal Aurag","doi":"10.1186/s40793-024-00611-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Soil bacteria often form close associations with their host plants, particularly within the root compartment, playing a significant role in plant growth and stress resilience. Vachellia tortilis subsp. raddiana, (V. tortilis subsp. raddiana)a leguminous tree, naturally thrives in the harsh, arid climate of the Guelmim region in southern Morocco. This study aims to explore the diversity and potential plant growth-promoting (PGP) activities of bacteria associated with this tree.</p><p><strong>Results: </strong>A total of 152 bacterial isolates were obtained from the rhizosphere of V. tortilis subsp. raddiana. Rep-PCR fingerprinting revealed 25 distinct genomic groups, leading to the selection of 84 representative strains for further molecular identification via 16 S rRNA gene sequencing. Seventeen genera were identified, with Bacillus and Pseudomonas being predominant. Bacillus strains demonstrated significant tolerance to water stress (up to 30% PEG), while Pseudomonas strains showed high salinity tolerance (up to 14% NaCl). In vitro studies indicated variability in PGP activities among the strains, including mineral solubilization, biological nitrogen fixation, ACC deaminase activity, and production of auxin, siderophores, ammonia, lytic enzymes, and HCN. Three elite strains were selected for greenhouse inoculation trials with V. tortilis subsp. raddiana. Strain LMR725 notably enhanced various plant growth parameters compared to uninoculated control plants.</p><p><strong>Conclusions: </strong>The findings underscore the potential of Bacillus and Pseudomonas strains as biofertilizers, with strain LMR725 showing particular promise in enhancing the growth of V. tortilis subsp. raddiana. This strain emerges as a strong candidate for biofertilizer formulation aimed at improving plant growth and resilience in arid environments.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438029/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-024-00611-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Soil bacteria often form close associations with their host plants, particularly within the root compartment, playing a significant role in plant growth and stress resilience. Vachellia tortilis subsp. raddiana, (V. tortilis subsp. raddiana)a leguminous tree, naturally thrives in the harsh, arid climate of the Guelmim region in southern Morocco. This study aims to explore the diversity and potential plant growth-promoting (PGP) activities of bacteria associated with this tree.

Results: A total of 152 bacterial isolates were obtained from the rhizosphere of V. tortilis subsp. raddiana. Rep-PCR fingerprinting revealed 25 distinct genomic groups, leading to the selection of 84 representative strains for further molecular identification via 16 S rRNA gene sequencing. Seventeen genera were identified, with Bacillus and Pseudomonas being predominant. Bacillus strains demonstrated significant tolerance to water stress (up to 30% PEG), while Pseudomonas strains showed high salinity tolerance (up to 14% NaCl). In vitro studies indicated variability in PGP activities among the strains, including mineral solubilization, biological nitrogen fixation, ACC deaminase activity, and production of auxin, siderophores, ammonia, lytic enzymes, and HCN. Three elite strains were selected for greenhouse inoculation trials with V. tortilis subsp. raddiana. Strain LMR725 notably enhanced various plant growth parameters compared to uninoculated control plants.

Conclusions: The findings underscore the potential of Bacillus and Pseudomonas strains as biofertilizers, with strain LMR725 showing particular promise in enhancing the growth of V. tortilis subsp. raddiana. This strain emerges as a strong candidate for biofertilizer formulation aimed at improving plant growth and resilience in arid environments.

Vachellia tortilis subsp. raddiana 根瘤菌的遗传多样性、抗逆性和植物益生潜力。
背景:土壤细菌通常与其寄主植物形成紧密的联系,尤其是在根部,在植物生长和抗逆性方面发挥着重要作用。豆科植物 Vachellia tortilis subsp.本研究旨在探索与这种树相关的细菌的多样性和潜在的植物生长促进(PGP)活性:结果:从 V. tortilis subsp.Rep-PCR指纹图谱显示有 25 个不同的基因组群,从而筛选出 84 株具有代表性的菌株,通过 16 S rRNA 基因测序进行进一步的分子鉴定。共鉴定出 17 个菌属,其中以芽孢杆菌和假单胞菌为主。芽孢杆菌菌株对水分胁迫(高达 30% PEG)表现出明显的耐受性,而假单胞菌菌株则表现出较高的耐盐性(高达 14% NaCl)。体外研究表明,不同菌株的 PGP 活性存在差异,包括矿质溶解、生物固氮、ACC 脱氨酶活性,以及产生辅酶、苷元、氨、裂解酶和 HCN。在与 V. tortilis subsp. raddiana 的温室接种试验中,选出了三个优良菌株。与未接种的对照植物相比,菌株 LMR725 显著提高了植物的各种生长参数:结论:研究结果表明,芽孢杆菌和假单胞菌菌株具有作为生物肥料的潜力,其中菌株 LMR725 在促进 V. tortilis subsp.该菌株是生物肥料配方的有力候选者,旨在改善干旱环境中植物的生长和恢复能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Microbiome
Environmental Microbiome Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
2.50%
发文量
55
审稿时长
13 weeks
期刊介绍: Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信