Task-Adaptive Angle Selection for Computed Tomography-Based Defect Detection.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Tianyuan Wang, Virginia Florian, Richard Schielein, Christian Kretzer, Stefan Kasperl, Felix Lucka, Tristan van Leeuwen
{"title":"Task-Adaptive Angle Selection for Computed Tomography-Based Defect Detection.","authors":"Tianyuan Wang, Virginia Florian, Richard Schielein, Christian Kretzer, Stefan Kasperl, Felix Lucka, Tristan van Leeuwen","doi":"10.3390/jimaging10090208","DOIUrl":null,"url":null,"abstract":"<p><p>Sparse-angle X-ray Computed Tomography (CT) plays a vital role in industrial quality control but leads to an inherent trade-off between scan time and reconstruction quality. Adaptive angle selection strategies try to improve upon this based on the idea that the geometry of the object under investigation leads to an uneven distribution of the information content over the projection angles. Deep Reinforcement Learning (DRL) has emerged as an effective approach for adaptive angle selection in X-ray CT. While previous studies focused on optimizing generic image quality measures using a fixed number of angles, our work extends them by considering a specific downstream task, namely image-based defect detection, and introducing flexibility in the number of angles used. By leveraging prior knowledge about typical defect characteristics, our task-adaptive angle selection method, adaptable in terms of angle count, enables easy detection of defects in the reconstructed images.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10090208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse-angle X-ray Computed Tomography (CT) plays a vital role in industrial quality control but leads to an inherent trade-off between scan time and reconstruction quality. Adaptive angle selection strategies try to improve upon this based on the idea that the geometry of the object under investigation leads to an uneven distribution of the information content over the projection angles. Deep Reinforcement Learning (DRL) has emerged as an effective approach for adaptive angle selection in X-ray CT. While previous studies focused on optimizing generic image quality measures using a fixed number of angles, our work extends them by considering a specific downstream task, namely image-based defect detection, and introducing flexibility in the number of angles used. By leveraging prior knowledge about typical defect characteristics, our task-adaptive angle selection method, adaptable in terms of angle count, enables easy detection of defects in the reconstructed images.

基于计算机断层扫描的缺陷检测的任务自适应角度选择
稀疏角度 X 射线计算机断层扫描(CT)在工业质量控制中发挥着重要作用,但在扫描时间和重建质量之间存在固有的权衡问题。自适应角度选择策略试图改善这一问题,其依据是被测物体的几何形状会导致信息内容在投影角度上的不均匀分布。深度强化学习(DRL)已成为 X 射线 CT 自适应角度选择的有效方法。以往的研究侧重于使用固定数量的角度来优化通用图像质量度量,而我们的工作则通过考虑特定的下游任务(即基于图像的缺陷检测),并在使用的角度数量上引入灵活性来扩展这些研究。通过利用有关典型缺陷特征的先验知识,我们的任务自适应角度选择方法可根据角度数进行调整,从而轻松检测重建图像中的缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信