Florence Rufflé, Jérôme Reboul, Anthony Boureux, Benoit Guibert, Chloé Bessière, Raissa Silva, Eric Jourdan, Jean-Baptiste Gaillard, Anne Boland, Jean-François Deleuze, Catherine Sénamaud-Beaufort, Dorothée Selimoglu-Buet, Eric Solary, Nicolas Gilbert, Thérèse Commes
{"title":"Effective requesting method to detect fusion transcripts in chronic myelomonocytic leukemia RNA-seq.","authors":"Florence Rufflé, Jérôme Reboul, Anthony Boureux, Benoit Guibert, Chloé Bessière, Raissa Silva, Eric Jourdan, Jean-Baptiste Gaillard, Anne Boland, Jean-François Deleuze, Catherine Sénamaud-Beaufort, Dorothée Selimoglu-Buet, Eric Solary, Nicolas Gilbert, Thérèse Commes","doi":"10.1093/nargab/lqae117","DOIUrl":null,"url":null,"abstract":"<p><p>RNA sequencing technology combining short read and long read analysis can be used to detect chimeric RNAs in malignant cells. Here, we propose an integrated approach that uses k-mers to analyze indexed datasets. This approach is used to identify chimeric RNA in chronic myelomonocytic leukemia (CMML) cells, a myeloid malignancy that associates features of myelodysplastic and myeloproliferative neoplasms. In virtually every CMML patient, new generation sequencing identifies one or several somatic driver mutations, typically affecting epigenetic, splicing and signaling genes. In contrast, cytogenetic aberrations are currently detected in only one third of the cases. Nevertheless, chromosomal abnormalities contribute to patient stratification, some of them being associated with higher risk of poor outcome, e.g. through transformation into acute myeloid leukemia (AML). Our approach selects four chimeric RNAs that have been detected and validated in CMML cells. We further focus on <i>NRIP1-MIR99AHG</i>, as this fusion has also recently been detected in AML cells. We show that this fusion encodes three isoforms, including a novel one. Further studies will decipher the biological significance of such a fusion and its potential to improve disease stratification. Taken together, this report demonstrates the ability of a large-scale approach to detect chimeric RNAs in cancer cells.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 3","pages":"lqae117"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420675/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA sequencing technology combining short read and long read analysis can be used to detect chimeric RNAs in malignant cells. Here, we propose an integrated approach that uses k-mers to analyze indexed datasets. This approach is used to identify chimeric RNA in chronic myelomonocytic leukemia (CMML) cells, a myeloid malignancy that associates features of myelodysplastic and myeloproliferative neoplasms. In virtually every CMML patient, new generation sequencing identifies one or several somatic driver mutations, typically affecting epigenetic, splicing and signaling genes. In contrast, cytogenetic aberrations are currently detected in only one third of the cases. Nevertheless, chromosomal abnormalities contribute to patient stratification, some of them being associated with higher risk of poor outcome, e.g. through transformation into acute myeloid leukemia (AML). Our approach selects four chimeric RNAs that have been detected and validated in CMML cells. We further focus on NRIP1-MIR99AHG, as this fusion has also recently been detected in AML cells. We show that this fusion encodes three isoforms, including a novel one. Further studies will decipher the biological significance of such a fusion and its potential to improve disease stratification. Taken together, this report demonstrates the ability of a large-scale approach to detect chimeric RNAs in cancer cells.