Peter Galos, Ludvig Hult, Dave Zachariah, Anders Lewén, Anders Hånell, Timothy Howells, Thomas B Schön, Per Enblad
{"title":"Machine Learning Based Prediction of Imminent ICP Insults During Neurocritical Care of Traumatic Brain Injury.","authors":"Peter Galos, Ludvig Hult, Dave Zachariah, Anders Lewén, Anders Hånell, Timothy Howells, Thomas B Schön, Per Enblad","doi":"10.1007/s12028-024-02119-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In neurointensive care, increased intracranial pressure (ICP) is a feared secondary brain insult in traumatic brain injury (TBI). A system that predicts ICP insults before they emerge may facilitate early optimization of the physiology, which may in turn lead to stopping the predicted ICP insult from occurring. The aim of this study was to evaluate the performance of different artificial intelligence models in predicting the risk of ICP insults.</p><p><strong>Methods: </strong>The models were trained to predict risk of ICP insults starting within 30 min, using the Uppsala high frequency TBI dataset. A restricted dataset consisting of only monitoring data were used, and an unrestricted dataset using monitoring data as well as clinical data, demographic data, and radiological evaluations was used. Four different model classes were compared: Gaussian process regression, logistic regression, random forest classifier, and Extreme Gradient Boosted decision trees (XGBoost).</p><p><strong>Results: </strong>Six hundred and two patients with TBI were included (total monitoring 138,411 h). On the task of predicting upcoming ICP insults, the Gaussian process regression model performed similarly on the Uppsala high frequency TBI dataset (sensitivity 93.2%, specificity 93.9%, area under the receiver operating characteristic curve [AUROC] 98.3%), as in earlier smaller studies. Using a more flexible model (XGBoost) resulted in a comparable performance (sensitivity 93.8%, specificity 94.6%, AUROC 98.7%). Adding more clinical variables and features further improved the performance of the models slightly (XGBoost: sensitivity 94.1%, specificity of 94.6%, AUROC 98.8%).</p><p><strong>Conclusions: </strong>Artificial intelligence models have potential to become valuable tools for predicting ICP insults in advance during neurointensive care. The fact that common off-the-shelf models, such as XGBoost, performed well in predicting ICP insults opens new possibilities that can lead to faster advances in the field and earlier clinical implementations.</p>","PeriodicalId":19118,"journal":{"name":"Neurocritical Care","volume":" ","pages":"387-397"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocritical Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12028-024-02119-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In neurointensive care, increased intracranial pressure (ICP) is a feared secondary brain insult in traumatic brain injury (TBI). A system that predicts ICP insults before they emerge may facilitate early optimization of the physiology, which may in turn lead to stopping the predicted ICP insult from occurring. The aim of this study was to evaluate the performance of different artificial intelligence models in predicting the risk of ICP insults.
Methods: The models were trained to predict risk of ICP insults starting within 30 min, using the Uppsala high frequency TBI dataset. A restricted dataset consisting of only monitoring data were used, and an unrestricted dataset using monitoring data as well as clinical data, demographic data, and radiological evaluations was used. Four different model classes were compared: Gaussian process regression, logistic regression, random forest classifier, and Extreme Gradient Boosted decision trees (XGBoost).
Results: Six hundred and two patients with TBI were included (total monitoring 138,411 h). On the task of predicting upcoming ICP insults, the Gaussian process regression model performed similarly on the Uppsala high frequency TBI dataset (sensitivity 93.2%, specificity 93.9%, area under the receiver operating characteristic curve [AUROC] 98.3%), as in earlier smaller studies. Using a more flexible model (XGBoost) resulted in a comparable performance (sensitivity 93.8%, specificity 94.6%, AUROC 98.7%). Adding more clinical variables and features further improved the performance of the models slightly (XGBoost: sensitivity 94.1%, specificity of 94.6%, AUROC 98.8%).
Conclusions: Artificial intelligence models have potential to become valuable tools for predicting ICP insults in advance during neurointensive care. The fact that common off-the-shelf models, such as XGBoost, performed well in predicting ICP insults opens new possibilities that can lead to faster advances in the field and earlier clinical implementations.
期刊介绍:
Neurocritical Care is a peer reviewed scientific publication whose major goal is to disseminate new knowledge on all aspects of acute neurological care. It is directed towards neurosurgeons, neuro-intensivists, neurologists, anesthesiologists, emergency physicians, and critical care nurses treating patients with urgent neurologic disorders. These are conditions that may potentially evolve rapidly and could need immediate medical or surgical intervention. Neurocritical Care provides a comprehensive overview of current developments in intensive care neurology, neurosurgery and neuroanesthesia and includes information about new therapeutic avenues and technological innovations. Neurocritical Care is the official journal of the Neurocritical Care Society.