Luca Ferrarese, Michael Koch, Artemis Baumann, Liliana Bento-Lopes, Daria Wüst, Ivan Berest, Manfred Kopf, Sabine Werner
{"title":"Inflammatory Mediators Suppress FGFR2 Expression in Human Keratinocytes to Promote Inflammation.","authors":"Luca Ferrarese, Michael Koch, Artemis Baumann, Liliana Bento-Lopes, Daria Wüst, Ivan Berest, Manfred Kopf, Sabine Werner","doi":"10.1080/10985549.2024.2399766","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast growth factors (FGFs) are key orchestrators of development, tissue homeostasis and repair. FGF receptor (FGFR) deficiency in mouse keratinocytes causes an inflammatory skin phenotype with similarities to atopic dermatitis, but the human relevance is unclear. Therefore, we generated human keratinocytes with a CRISPR/Cas9-induced knockout of <i>FGFR2</i>. Loss of this receptor promoted the expression of interferon-stimulated genes and pro-inflammatory cytokines under homeostatic conditions and in particular in response to different inflammatory mediators. Expression of FGFR2 itself was strongly downregulated in cultured human keratinocytes exposed to various pro-inflammatory stimuli. This is relevant <i>in vivo</i>, because bioinformatics analysis of bulk and single-cell RNA-seq data showed strongly reduced expression of <i>FGFR2</i> in lesional skin of atopic dermatitis patients, which likely aggravates the inflammatory phenotype. These results reveal a key function of FGFR2 in human keratinocytes in the suppression of inflammation and suggest a role of FGFR2 downregulation in the pathogenesis of atopic dermatitis and possibly other inflammatory diseases.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2024.2399766","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Fibroblast growth factors (FGFs) are key orchestrators of development, tissue homeostasis and repair. FGF receptor (FGFR) deficiency in mouse keratinocytes causes an inflammatory skin phenotype with similarities to atopic dermatitis, but the human relevance is unclear. Therefore, we generated human keratinocytes with a CRISPR/Cas9-induced knockout of FGFR2. Loss of this receptor promoted the expression of interferon-stimulated genes and pro-inflammatory cytokines under homeostatic conditions and in particular in response to different inflammatory mediators. Expression of FGFR2 itself was strongly downregulated in cultured human keratinocytes exposed to various pro-inflammatory stimuli. This is relevant in vivo, because bioinformatics analysis of bulk and single-cell RNA-seq data showed strongly reduced expression of FGFR2 in lesional skin of atopic dermatitis patients, which likely aggravates the inflammatory phenotype. These results reveal a key function of FGFR2 in human keratinocytes in the suppression of inflammation and suggest a role of FGFR2 downregulation in the pathogenesis of atopic dermatitis and possibly other inflammatory diseases.