Thais Agostinho Martins , Luiz Daniel de Barros , Beatriz de Souza Lima Nino , Juliana Correa Bernardes , Ana Clécia dos Santos Silva , Ana Flávia Minutti , Sergio Tosi Cardim , Milena Patzer Rose , Valentina Martinez , João Luis Garcia
{"title":"Indirect ELISAs with sucrose subcellular fractions of Neospora caninum as antigens for diagnosis of neosporosis in cattle","authors":"Thais Agostinho Martins , Luiz Daniel de Barros , Beatriz de Souza Lima Nino , Juliana Correa Bernardes , Ana Clécia dos Santos Silva , Ana Flávia Minutti , Sergio Tosi Cardim , Milena Patzer Rose , Valentina Martinez , João Luis Garcia","doi":"10.1016/j.jim.2024.113760","DOIUrl":null,"url":null,"abstract":"<div><div>Neosporosis is one of the major causes of abortion in cattle, and it is responsible for significant economic losses in those animals. Thus, this study aimed to evaluate indirect ELISA using subcellular fractions of <em>Neospora caninum</em> obtained via sucrose gradient separation. Eighty-five sera from dairy cattle previously tested using indirect immunofluorescence assay (IFA) were used. Three distinct bands were separated at 1.0 M, 1.4 M, 1.6 M, and the pellet at 1.8 M, which were identified as fractions one (F1), two (F2), three (F3), and four (F4), respectively. These fractions showed parasite membranes in the F1, rhoptry and conoids in the F2, mitochondria in the F3, and tachyzoite ghosts remain in F4. Indirect ELISAs for IgM, and IgG were performed. Additionally, sensitivity, specificity, and kappa values were defined considering the IFA as the gold standard. The highest and lowest specificities were observed for F1 (76 %) and F3 (16 %), respectively. F2 and F4 showed the highest sensitivity (93.3 %), kappa agreement (0.46), and Negative Preventive Value (NPV) (73 %) respectively. It was possible to standardize indirect ELISAs using whole soluble antigen and subcellular fractions of <em>N. caninum</em>, and F2 and F4 showed higher sensitivity (93.3 %), kappa (0.41), and NPV values (75 %) than F1, and F3, which could be used for epidemiology studies such as screening.</div></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022175924001455","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Neosporosis is one of the major causes of abortion in cattle, and it is responsible for significant economic losses in those animals. Thus, this study aimed to evaluate indirect ELISA using subcellular fractions of Neospora caninum obtained via sucrose gradient separation. Eighty-five sera from dairy cattle previously tested using indirect immunofluorescence assay (IFA) were used. Three distinct bands were separated at 1.0 M, 1.4 M, 1.6 M, and the pellet at 1.8 M, which were identified as fractions one (F1), two (F2), three (F3), and four (F4), respectively. These fractions showed parasite membranes in the F1, rhoptry and conoids in the F2, mitochondria in the F3, and tachyzoite ghosts remain in F4. Indirect ELISAs for IgM, and IgG were performed. Additionally, sensitivity, specificity, and kappa values were defined considering the IFA as the gold standard. The highest and lowest specificities were observed for F1 (76 %) and F3 (16 %), respectively. F2 and F4 showed the highest sensitivity (93.3 %), kappa agreement (0.46), and Negative Preventive Value (NPV) (73 %) respectively. It was possible to standardize indirect ELISAs using whole soluble antigen and subcellular fractions of N. caninum, and F2 and F4 showed higher sensitivity (93.3 %), kappa (0.41), and NPV values (75 %) than F1, and F3, which could be used for epidemiology studies such as screening.
期刊介绍:
The Journal of Immunological Methods is devoted to covering techniques for: (1) Quantitating and detecting antibodies and/or antigens. (2) Purifying immunoglobulins, lymphokines and other molecules of the immune system. (3) Isolating antigens and other substances important in immunological processes. (4) Labelling antigens and antibodies. (5) Localizing antigens and/or antibodies in tissues and cells. (6) Detecting, and fractionating immunocompetent cells. (7) Assaying for cellular immunity. (8) Documenting cell-cell interactions. (9) Initiating immunity and unresponsiveness. (10) Transplanting tissues. (11) Studying items closely related to immunity such as complement, reticuloendothelial system and others. (12) Molecular techniques for studying immune cells and their receptors. (13) Imaging of the immune system. (14) Methods for production or their fragments in eukaryotic and prokaryotic cells.
In addition the journal will publish articles on novel methods for analysing the organization, structure and expression of genes for immunologically important molecules such as immunoglobulins, T cell receptors and accessory molecules involved in antigen recognition, processing and presentation. Submitted full length manuscripts should describe new methods of broad applicability to immunology and not simply the application of an established method to a particular substance - although papers describing such applications may be considered for publication as a short Technical Note. Review articles will also be published by the Journal of Immunological Methods. In general these manuscripts are by solicitation however anyone interested in submitting a review can contact the Reviews Editor and provide an outline of the proposed review.