Adeline Colussi, Leonardo Almeida-Souza, Harvey T McMahon
{"title":"A single-particle analysis method for detecting membrane remodelling and curvature sensing.","authors":"Adeline Colussi, Leonardo Almeida-Souza, Harvey T McMahon","doi":"10.1242/jcs.263533","DOIUrl":null,"url":null,"abstract":"<p><p>In biology, shape and function are related. Therefore, it is important to understand how membrane shape is generated, stabilised and sensed by proteins and how this relates to organelle function. Here, we present an assay that can detect curvature preference and membrane remodelling with free-floating liposomes using protein concentrations in physiologically relevant ranges. The assay reproduced known curvature preferences of BAR domains and allowed the discovery of high-curvature preference for the PH domain of AKT and the FYVE domain of HRS (also known as HGS). In addition, our method reproduced the membrane vesiculation activity of the ENTH domain of epsin-1 (EPN1) and showed similar activity for the ANTH domains of PiCALM and Hip1R. Finally, we found that the curvature sensitivity of the N-BAR domain of endophilin inversely correlates to membrane charge and that deletion of its N-terminal amphipathic helix increased its curvature specificity. Thus, our method is a generally applicable qualitative method for assessing membrane curvature sensing and remodelling by proteins.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263533","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In biology, shape and function are related. Therefore, it is important to understand how membrane shape is generated, stabilised and sensed by proteins and how this relates to organelle function. Here, we present an assay that can detect curvature preference and membrane remodelling with free-floating liposomes using protein concentrations in physiologically relevant ranges. The assay reproduced known curvature preferences of BAR domains and allowed the discovery of high-curvature preference for the PH domain of AKT and the FYVE domain of HRS (also known as HGS). In addition, our method reproduced the membrane vesiculation activity of the ENTH domain of epsin-1 (EPN1) and showed similar activity for the ANTH domains of PiCALM and Hip1R. Finally, we found that the curvature sensitivity of the N-BAR domain of endophilin inversely correlates to membrane charge and that deletion of its N-terminal amphipathic helix increased its curvature specificity. Thus, our method is a generally applicable qualitative method for assessing membrane curvature sensing and remodelling by proteins.