BLEscope: A Bluetooth Low Energy (BLE) Microscope for Wireless Multicontrast Functional Imaging.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Subhrajit Das, Janaka Senarathna, Yunke Ren, Vu Dinh, Mingyao Ying, Ralph Etienne-Cummings, Arvind P Pathak
{"title":"BLEscope: A Bluetooth Low Energy (BLE) Microscope for Wireless Multicontrast Functional Imaging.","authors":"Subhrajit Das, Janaka Senarathna, Yunke Ren, Vu Dinh, Mingyao Ying, Ralph Etienne-Cummings, Arvind P Pathak","doi":"10.1109/TBME.2024.3467221","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in low-power wireless-capable system-on-chips (SoCs) have accelerated diverse Internet of Things (IoT) applications, encompassing wearables, asset monitoring, and more. Concurrently, the field of neuroimaging has experienced escalating demand for lightweight, untethered, low-power systems capable of imaging in small animals. This article explores the feasibility of using a low-power asset monitoring system as the basis of a new architecture for fluorescence and hemodynamic contrast-based wireless functional imaging. The core system architecture hinges on the fusion of a Bluetooth Low Energy (BLE) 5.2 SoC and a low-power 560×560, 8-bit monochrome CMOS image sensor module. Successful integration of a multicontrast optical front-end consisting of a fluorescence channel (FL) and an intrinsic optical signal (IOS) channel resulted in the creation of a wireless microscope called 'BLEscope'. Next, we developed a wireless (i.e. BLE) protocol to remotely operate the BLEscope via a laptop and acquire in vivo images at 1 frame per second (fps). We then conducted a comprehensive characterization of the BLEscope to assess its optical capabilities and power consumption. We report a new benchmark for continuous wireless imaging of ∼1.5 hours with a 100 mAh battery. Via the FL channel of the BLEscope, we successfully tracked the kinetics of an intravenously injected fluorescent tracer and acquired images of fluorescent brain tumor cells in vivo. Via the IOS channel, we characterized the differential response of normal and tumor-associated blood vessels to a carbogen gas inhalation challenge. When miniaturized, the BLEscope will result in a new class of low-power, implantable or wireless microscopes that could transform preclinical and clinical neuroimaging applications.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3467221","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in low-power wireless-capable system-on-chips (SoCs) have accelerated diverse Internet of Things (IoT) applications, encompassing wearables, asset monitoring, and more. Concurrently, the field of neuroimaging has experienced escalating demand for lightweight, untethered, low-power systems capable of imaging in small animals. This article explores the feasibility of using a low-power asset monitoring system as the basis of a new architecture for fluorescence and hemodynamic contrast-based wireless functional imaging. The core system architecture hinges on the fusion of a Bluetooth Low Energy (BLE) 5.2 SoC and a low-power 560×560, 8-bit monochrome CMOS image sensor module. Successful integration of a multicontrast optical front-end consisting of a fluorescence channel (FL) and an intrinsic optical signal (IOS) channel resulted in the creation of a wireless microscope called 'BLEscope'. Next, we developed a wireless (i.e. BLE) protocol to remotely operate the BLEscope via a laptop and acquire in vivo images at 1 frame per second (fps). We then conducted a comprehensive characterization of the BLEscope to assess its optical capabilities and power consumption. We report a new benchmark for continuous wireless imaging of ∼1.5 hours with a 100 mAh battery. Via the FL channel of the BLEscope, we successfully tracked the kinetics of an intravenously injected fluorescent tracer and acquired images of fluorescent brain tumor cells in vivo. Via the IOS channel, we characterized the differential response of normal and tumor-associated blood vessels to a carbogen gas inhalation challenge. When miniaturized, the BLEscope will result in a new class of low-power, implantable or wireless microscopes that could transform preclinical and clinical neuroimaging applications.

BLEscope:用于无线多对比度功能成像的蓝牙低功耗(BLE)显微镜。
低功耗无线功能片上系统(SoC)的最新进展加速了各种物联网(IoT)应用,包括可穿戴设备、资产监控等。与此同时,神经成像领域对能够在小型动物体内成像的轻便、无系留、低功耗系统的需求也在不断升级。本文探讨了将低功耗资产监控系统作为基于荧光和血液动力学对比的无线功能成像新架构基础的可行性。核心系统架构取决于蓝牙低功耗(BLE)5.2 SoC 和低功耗 560×560、8 位单色 CMOS 图像传感器模块的融合。我们成功整合了由荧光通道(FL)和本征光信号(IOS)通道组成的多对比度光学前端,从而创建了名为 "BLEscope "的无线显微镜。接下来,我们开发了一种无线(即 BLE)协议,可通过笔记本电脑远程操作 BLEscope,并以每秒 1 帧(fps)的速度获取活体图像。然后,我们对 BLEscope 进行了全面鉴定,以评估其光学能力和功耗。我们报告了使用 100 mAh 电池连续无线成像 1.5 小时的新基准。通过 BLEscope 的 FL 通道,我们成功追踪了静脉注射荧光示踪剂的动力学,并获取了荧光脑肿瘤细胞的活体图像。通过 IOS 通道,我们描述了正常血管和肿瘤相关血管对吸入碳化气体挑战的不同反应。BLEscope 微型化后,将成为一类新型低功耗、可植入或无线显微镜,从而改变临床前和临床神经成像应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信