Maxim Lippeveld, Daniel Peralta, Andrew Filby, Yvan Saeys
{"title":"SCIP: A scalable, reproducible and open-source pipeline for morphological profiling of image cytometry and microscopy data","authors":"Maxim Lippeveld, Daniel Peralta, Andrew Filby, Yvan Saeys","doi":"10.1002/cyto.a.24896","DOIUrl":null,"url":null,"abstract":"<p>Imaging flow cytometry (IFC) provides single-cell imaging data at a high acquisition rate. It is increasingly used in image-based profiling experiments consisting of hundreds of thousands of multi-channel images of cells. Currently available software solutions for processing microscopy data can provide good results in downstream analysis, but are limited in efficiency and scalability, and often ill-adapted to IFC data. In this work, we propose Scalable Cytometry Image Processing (SCIP), a Python software that efficiently processes images from IFC <i>and</i> standard microscopy datasets. We also propose a file format for efficiently storing IFC data. We showcase our contributions on two large-scale microscopy and one IFC datasets, all of which are publicly available. Our results show that SCIP can extract the same kind of information as other tools, in a much shorter time and in a more scalable manner.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"105 11","pages":"816-828"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24896","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24896","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Imaging flow cytometry (IFC) provides single-cell imaging data at a high acquisition rate. It is increasingly used in image-based profiling experiments consisting of hundreds of thousands of multi-channel images of cells. Currently available software solutions for processing microscopy data can provide good results in downstream analysis, but are limited in efficiency and scalability, and often ill-adapted to IFC data. In this work, we propose Scalable Cytometry Image Processing (SCIP), a Python software that efficiently processes images from IFC and standard microscopy datasets. We also propose a file format for efficiently storing IFC data. We showcase our contributions on two large-scale microscopy and one IFC datasets, all of which are publicly available. Our results show that SCIP can extract the same kind of information as other tools, in a much shorter time and in a more scalable manner.
期刊介绍:
Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques.
The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome:
Biomedical Instrumentation Engineering
Biophotonics
Bioinformatics
Cell Biology
Computational Biology
Data Science
Immunology
Parasitology
Microbiology
Neuroscience
Cancer
Stem Cells
Tissue Regeneration.