CPMKG: a condition-based knowledge graph for precision medicine.

IF 3.4 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Jiaxin Yang, Xinhao Zhuang, Zhenqi Li, Gang Xiong, Ping Xu, Yunchao Ling, Guoqing Zhang
{"title":"CPMKG: a condition-based knowledge graph for precision medicine.","authors":"Jiaxin Yang, Xinhao Zhuang, Zhenqi Li, Gang Xiong, Ping Xu, Yunchao Ling, Guoqing Zhang","doi":"10.1093/database/baae102","DOIUrl":null,"url":null,"abstract":"<p><p>Personalized medicine tailors treatments and dosages based on a patient's unique characteristics, particularly its genetic profile. Over the decades, stratified research and clinical trials have uncovered crucial drug-related information-such as dosage, effectiveness, and side effects-affecting specific individuals with particular genetic backgrounds. This genetic-specific knowledge, characterized by complex multirelationships and conditions, cannot be adequately represented or stored in conventional knowledge systems. To address these challenges, we developed CPMKG, a condition-based platform that enables comprehensive knowledge representation. Through information extraction and meticulous curation, we compiled 307 614 knowledge entries, encompassing thousands of drugs, diseases, phenotypes (complications/side effects), genes, and genomic variations across four key categories: drug side effects, drug sensitivity, drug mechanisms, and drug indications. CPMKG facilitates drug-centric exploration and enables condition-based multiknowledge inference, accelerating knowledge discovery through three pivotal applications. To enhance user experience, we seamlessly integrated a sophisticated large language model that provides textual interpretations for each subgraph, bridging the gap between structured graphs and language expressions. With its comprehensive knowledge graph and user-centric applications, CPMKG serves as a valuable resource for clinical research, offering drug information tailored to personalized genetic profiles, syndromes, and phenotypes. Database URL: https://www.biosino.org/cpmkg/.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae102","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Personalized medicine tailors treatments and dosages based on a patient's unique characteristics, particularly its genetic profile. Over the decades, stratified research and clinical trials have uncovered crucial drug-related information-such as dosage, effectiveness, and side effects-affecting specific individuals with particular genetic backgrounds. This genetic-specific knowledge, characterized by complex multirelationships and conditions, cannot be adequately represented or stored in conventional knowledge systems. To address these challenges, we developed CPMKG, a condition-based platform that enables comprehensive knowledge representation. Through information extraction and meticulous curation, we compiled 307 614 knowledge entries, encompassing thousands of drugs, diseases, phenotypes (complications/side effects), genes, and genomic variations across four key categories: drug side effects, drug sensitivity, drug mechanisms, and drug indications. CPMKG facilitates drug-centric exploration and enables condition-based multiknowledge inference, accelerating knowledge discovery through three pivotal applications. To enhance user experience, we seamlessly integrated a sophisticated large language model that provides textual interpretations for each subgraph, bridging the gap between structured graphs and language expressions. With its comprehensive knowledge graph and user-centric applications, CPMKG serves as a valuable resource for clinical research, offering drug information tailored to personalized genetic profiles, syndromes, and phenotypes. Database URL: https://www.biosino.org/cpmkg/.

CPMKG:基于病情的精准医疗知识图谱。
个性化医疗根据患者的独特特征,尤其是基因特征,量身定制治疗方法和剂量。几十年来,分层研究和临床试验发现了与药物相关的重要信息,如剂量、疗效和副作用,这些信息影响着具有特定遗传背景的特定个体。这些基因特异性知识具有复杂的多重关系和条件,无法在传统知识系统中得到充分表达或存储。为了应对这些挑战,我们开发了 CPMKG,这是一个基于条件的平台,可以实现全面的知识表征。通过信息提取和精心整理,我们汇编了 307 614 个知识条目,涵盖数千种药物、疾病、表型(并发症/副作用)、基因和基因组变异,涉及四个关键类别:药物副作用、药物敏感性、药物机制和药物适应症。CPMKG 可促进以药物为中心的探索,实现基于条件的多知识推断,通过三个关键应用加速知识发现。为了增强用户体验,我们无缝集成了一个复杂的大型语言模型,为每个子图提供文本解释,在结构图和语言表达之间架起了一座桥梁。凭借其全面的知识图谱和以用户为中心的应用,CPMKG 成为临床研究的宝贵资源,为个性化基因图谱、综合症和表型提供量身定制的药物信息。数据库网址:https://www.biosino.org/cpmkg/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信