Xiuqi Li, Dan Liu, Shupeng Liu, Mengyang Yu, Xiaofei Wu, Hongyun Wang
{"title":"Application of Pharmacometrics in Advancing the Clinical Research of Antibody-Drug Conjugates: Principles and Modeling Strategies.","authors":"Xiuqi Li, Dan Liu, Shupeng Liu, Mengyang Yu, Xiaofei Wu, Hongyun Wang","doi":"10.1007/s40262-024-01423-x","DOIUrl":null,"url":null,"abstract":"<p><p>Antibody-drug conjugates (ADCs) have become a pivotal area in the research and development of antitumor drugs. They provide innovative possibilities for tumor therapy by integrating the tumor-targeting capabilities of monoclonal antibodies with the cytotoxic effect of small molecule drugs. Pharmacometrics, an important discipline, facilitates comprehensive understanding of the pharmacokinetic characteristics of ADCs by integrating clinical trial data through modeling and simulation. However, due to the complex structure of ADCs, their modeling approaches are still unclear. In this review, we analyzed published population pharmacokinetic models for ADCs and classified them into single-analyte, two-analyte, and three-analyte models. We also described the benefits, limitations, and recommendations for each model. Furthermore, we suggested that the development of population pharmacokinetic models for ADCs should be rigorously considered and established based on four key aspects: (1) research objectives; (2) available in vitro and animal data; (3) accessible clinical information; and (4) the capability of bioanalytical methods. This review offered insights to guide the application of pharmacometrics in the clinical research of ADCs, thereby contributing to more effective therapeutic development.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"1373-1387"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40262-024-01423-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibody-drug conjugates (ADCs) have become a pivotal area in the research and development of antitumor drugs. They provide innovative possibilities for tumor therapy by integrating the tumor-targeting capabilities of monoclonal antibodies with the cytotoxic effect of small molecule drugs. Pharmacometrics, an important discipline, facilitates comprehensive understanding of the pharmacokinetic characteristics of ADCs by integrating clinical trial data through modeling and simulation. However, due to the complex structure of ADCs, their modeling approaches are still unclear. In this review, we analyzed published population pharmacokinetic models for ADCs and classified them into single-analyte, two-analyte, and three-analyte models. We also described the benefits, limitations, and recommendations for each model. Furthermore, we suggested that the development of population pharmacokinetic models for ADCs should be rigorously considered and established based on four key aspects: (1) research objectives; (2) available in vitro and animal data; (3) accessible clinical information; and (4) the capability of bioanalytical methods. This review offered insights to guide the application of pharmacometrics in the clinical research of ADCs, thereby contributing to more effective therapeutic development.
期刊介绍:
Clinical Pharmacokinetics promotes the continuing development of clinical pharmacokinetics and pharmacodynamics for the improvement of drug therapy, and for furthering postgraduate education in clinical pharmacology and therapeutics.
Pharmacokinetics, the study of drug disposition in the body, is an integral part of drug development and rational use. Knowledge and application of pharmacokinetic principles leads to accelerated drug development, cost effective drug use and a reduced frequency of adverse effects and drug interactions.