Multiple Lax integrable higher dimensional AKNS(-1) equations and sine-Gordon equations.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xueping Cheng, Guiming Jin, Jianan Wang
{"title":"Multiple Lax integrable higher dimensional AKNS(-1) equations and sine-Gordon equations.","authors":"Xueping Cheng, Guiming Jin, Jianan Wang","doi":"10.1063/5.0223870","DOIUrl":null,"url":null,"abstract":"<p><p>Through the modified deformation algorithm related to conservation laws, the (1+1)-dimensional AKNS(-1) equations are extended to a (4+1)-dimensional AKNS(-1) system. When one, two, or three of the independent variables are removed, the (4+1)-dimensional AKNS(-1) system degenerates to some novel (3+1)-dimensional, (2+1)-dimensional, and (1+1)-dimensional AKNS(-1) systems, respectively. Under a simple dependent transformation, the (1+1)-dimensional AKNS(-1) equations turn into the classical sine-Gordon equation. Then using the same deformation procedure, the (1+1)-dimensional sine-Gordon equation is generalized to a (3+1)-dimensional version. By introducing the deformation operators to the Lax pairs of the original (1+1)-dimensional models, the Lax integrability of both the (4+1)-dimensional AKNS(-1) system and the (3+1)-dimensional sine-Gordon equation is proven. Finally, the traveling wave solutions of the (4+1)-dimensional AKNS(-1) system and the (3+1)-dimensional sine-Gordon equation are implicitly given and expressed by tanh function and incomplete elliptic integral, respectively. These results may enhance our understanding of the complex physical phenomena described by the nonlinear system discussed in this paper.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0223870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Through the modified deformation algorithm related to conservation laws, the (1+1)-dimensional AKNS(-1) equations are extended to a (4+1)-dimensional AKNS(-1) system. When one, two, or three of the independent variables are removed, the (4+1)-dimensional AKNS(-1) system degenerates to some novel (3+1)-dimensional, (2+1)-dimensional, and (1+1)-dimensional AKNS(-1) systems, respectively. Under a simple dependent transformation, the (1+1)-dimensional AKNS(-1) equations turn into the classical sine-Gordon equation. Then using the same deformation procedure, the (1+1)-dimensional sine-Gordon equation is generalized to a (3+1)-dimensional version. By introducing the deformation operators to the Lax pairs of the original (1+1)-dimensional models, the Lax integrability of both the (4+1)-dimensional AKNS(-1) system and the (3+1)-dimensional sine-Gordon equation is proven. Finally, the traveling wave solutions of the (4+1)-dimensional AKNS(-1) system and the (3+1)-dimensional sine-Gordon equation are implicitly given and expressed by tanh function and incomplete elliptic integral, respectively. These results may enhance our understanding of the complex physical phenomena described by the nonlinear system discussed in this paper.

多重拉克斯可积分高维 AKNS(-1) 方程和正弦-戈登方程。
通过与守恒定律相关的修正变形算法,(1+1)维 AKNS(-1) 方程被扩展为(4+1)维 AKNS(-1) 系统。当去掉一个、两个或三个自变量时,(4+1)维 AKNS(-1) 系统分别退化为一些新颖的(3+1)维、(2+1)维和(1+1)维 AKNS(-1) 系统。在简单的隶属变换下,(1+1)维 AKNS(-1)方程变成了经典的正弦-戈登方程。然后,利用同样的变形过程,(1+1)维正弦-戈登方程被泛化为(3+1)维版本。通过将变形算子引入原始 (1+1)- 维模型的 Lax 对,证明了 (4+1)- 维 AKNS(-1) 系统和 (3+1)- 维正弦-戈登方程的 Lax 可积分性。最后,隐式给出了 (4+1)-dimensional AKNS(-1) 系统和 (3+1)-dimensional 正弦-戈登方程的行波解,并分别用 tanh 函数和不完全椭圆积分表示。这些结果可以加深我们对本文讨论的非线性系统所描述的复杂物理现象的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信