The Role of MicroRNAs in Mesenchymal Stem Cell-Based Modulation of Pulmonary Fibrosis.

IF 3.2 4区 医学 Q3 CELL & TISSUE ENGINEERING
Carl Randall Harrell, Ana Volarevic, Valentin Djonov, Aleksandar Arsenijevic, Vladislav Volarevic
{"title":"The Role of MicroRNAs in Mesenchymal Stem Cell-Based Modulation of Pulmonary Fibrosis.","authors":"Carl Randall Harrell, Ana Volarevic, Valentin Djonov, Aleksandar Arsenijevic, Vladislav Volarevic","doi":"10.1177/09636897241281026","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary fibrosis is a complex and multifactorial condition that involves a cascade of events, including lung injury, damage of alveolar epithelial cells (AECs), generation of immune cell-driven inflammation, and activation of fibroblasts and their differentiation into myofibroblasts, resulting in the excessive production and deposition of collagen and progressive scarring and fibrosis of the lung tissue. As lung fibrosis advances, the scarring and stiffening of lung tissue can significantly hinder the exchange of oxygen and carbon dioxide, potentially leading to respiratory failure that can be life-threatening. Anti-inflammatory and immunosuppressive drugs are used to slow down the progression of the disease, manage symptoms, and enhance the patient's quality of life. However, prolonged immunosuppression could increase the susceptibility to severe bacterial, viral, or fungal pneumonia in lung-transplant recipients. Therefore, there is an urgent need for new therapeutic agents that can effectively reduce lung inflammation and fibrosis without compromising the protective immune response in patients with severe lung fibrosis. Results obtained in recently published studies demonstrated that mesenchymal stem/stromal cell-derived microRNAs (MSC-miRNAs) could attenuate detrimental immune response in injured lungs and prevent progression of lung fibrosis. Through the post-transcriptional regulation of target mRNA, MSC-miRNAs modulate protein synthesis and affect viability, proliferation, and cytokine production in AECs, fibroblasts, and lung-infiltrated immune cells. In order to delineate molecular mechanisms responsible for beneficial effects of MSC-miRNAs in the treatment of lung fibrosis, in this review article, we summarized current knowledge related to anti-fibrotic and anti-inflammatory pathways elicited in immune cells, AECs, and myofibroblasts by MSC-miRNAs.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241281026"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09636897241281026","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary fibrosis is a complex and multifactorial condition that involves a cascade of events, including lung injury, damage of alveolar epithelial cells (AECs), generation of immune cell-driven inflammation, and activation of fibroblasts and their differentiation into myofibroblasts, resulting in the excessive production and deposition of collagen and progressive scarring and fibrosis of the lung tissue. As lung fibrosis advances, the scarring and stiffening of lung tissue can significantly hinder the exchange of oxygen and carbon dioxide, potentially leading to respiratory failure that can be life-threatening. Anti-inflammatory and immunosuppressive drugs are used to slow down the progression of the disease, manage symptoms, and enhance the patient's quality of life. However, prolonged immunosuppression could increase the susceptibility to severe bacterial, viral, or fungal pneumonia in lung-transplant recipients. Therefore, there is an urgent need for new therapeutic agents that can effectively reduce lung inflammation and fibrosis without compromising the protective immune response in patients with severe lung fibrosis. Results obtained in recently published studies demonstrated that mesenchymal stem/stromal cell-derived microRNAs (MSC-miRNAs) could attenuate detrimental immune response in injured lungs and prevent progression of lung fibrosis. Through the post-transcriptional regulation of target mRNA, MSC-miRNAs modulate protein synthesis and affect viability, proliferation, and cytokine production in AECs, fibroblasts, and lung-infiltrated immune cells. In order to delineate molecular mechanisms responsible for beneficial effects of MSC-miRNAs in the treatment of lung fibrosis, in this review article, we summarized current knowledge related to anti-fibrotic and anti-inflammatory pathways elicited in immune cells, AECs, and myofibroblasts by MSC-miRNAs.

微RNA在间充质干细胞调节肺纤维化中的作用
肺纤维化是一种复杂的多因素疾病,涉及一系列事件,包括肺损伤、肺泡上皮细胞(AEC)损伤、免疫细胞驱动的炎症生成、成纤维细胞活化并分化成肌成纤维细胞,导致胶原蛋白的过度产生和沉积,以及肺组织的逐渐瘢痕化和纤维化。随着肺纤维化的发展,肺组织的瘢痕和僵化会严重阻碍氧气和二氧化碳的交换,可能导致呼吸衰竭,危及生命。抗炎药和免疫抑制剂可用于减缓疾病的进展、控制症状和提高患者的生活质量。然而,长期的免疫抑制会增加肺移植受者对严重细菌、病毒或真菌肺炎的易感性。因此,迫切需要新的治疗药物,既能有效减轻肺部炎症和纤维化,又不损害严重肺纤维化患者的保护性免疫反应。最近发表的研究结果表明,间充质干细胞/基质细胞衍生的微RNA(MSC-miRNAs)可减轻损伤肺部的有害免疫反应,防止肺纤维化的进展。通过对靶 mRNA 的转录后调控,间充质干细胞-miRNAs 可调节蛋白质合成,并影响 AECs、成纤维细胞和肺浸润免疫细胞的活力、增殖和细胞因子的产生。为了阐明间充质干细胞-miRNAs在治疗肺纤维化中的有益作用的分子机制,我们在这篇综述文章中总结了目前与间充质干细胞-miRNAs在免疫细胞、AECs和肌成纤维细胞中诱导的抗纤维化和抗炎途径相关的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Transplantation
Cell Transplantation 生物-细胞与组织工程
CiteScore
6.00
自引率
3.00%
发文量
97
审稿时长
6 months
期刊介绍: Cell Transplantation, The Regenerative Medicine Journal is an open access, peer reviewed journal that is published 12 times annually. Cell Transplantation is a multi-disciplinary forum for publication of articles on cell transplantation and its applications to human diseases. Articles focus on a myriad of topics including the physiological, medical, pre-clinical, tissue engineering, stem cell, and device-oriented aspects of the nervous, endocrine, cardiovascular, and endothelial systems, as well as genetically engineered cells. Cell Transplantation also reports on relevant technological advances, clinical studies, and regulatory considerations related to the implantation of cells into the body in order to provide complete coverage of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信