Kening Zhou, Yingying He, Xi Lin, Huihao Zhou, Xiaomin Xu, Jingui Xu
{"title":"KIFC1 depends on TRIM37-mediated ubiquitination of PLK4 to promote centrosome amplification in endometrial cancer.","authors":"Kening Zhou, Yingying He, Xi Lin, Huihao Zhou, Xiaomin Xu, Jingui Xu","doi":"10.1038/s41420-024-02190-1","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial cancer (EC), as one of the most common cancers, severely threatens female reproductive health. Our previous study has shown that Kinesin family member C1 (KIFC1) played crucial roles in the progression of EC. In addition, abnormal centrosome amplification, which was reported to be partially regulated by KIFC1, usually occurred in different cancers. However, whether KIFC1 promoted EC through centrosome amplification and the potential mechanism remain to be revealed. The present study demonstrated that overexpressed KIFC1, which exhibited a worse prognosis, had a positive correlation with an increased number of centrosomes in human EC samples. In addition, KIFC1 overexpression in EC cells prompted centrosome amplification, chromosomal instability, and cell cycle progression. Moreover, we demonstrated that KIFC1 inhibited E3 ubiquitin-protein ligase TRIM37 to maintain the stability of PLK4 by reducing its ubiquitination degradation, and finally promoting centrosome amplification and EC progression in vitro. Finally, the contributing role of KIFC1 and the inhibitory effect of TRIM37 on EC development and metastasis was verified in a nude mouse xenograft model. Our study elucidated that KIFC1 depends on TRIM37-mediated reduced ubiquitination degradation of PLK4 to promote centrosome amplification and EC progression, thus providing a potential prognostic marker and promising therapeutic target for EC in the future.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"419"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02190-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endometrial cancer (EC), as one of the most common cancers, severely threatens female reproductive health. Our previous study has shown that Kinesin family member C1 (KIFC1) played crucial roles in the progression of EC. In addition, abnormal centrosome amplification, which was reported to be partially regulated by KIFC1, usually occurred in different cancers. However, whether KIFC1 promoted EC through centrosome amplification and the potential mechanism remain to be revealed. The present study demonstrated that overexpressed KIFC1, which exhibited a worse prognosis, had a positive correlation with an increased number of centrosomes in human EC samples. In addition, KIFC1 overexpression in EC cells prompted centrosome amplification, chromosomal instability, and cell cycle progression. Moreover, we demonstrated that KIFC1 inhibited E3 ubiquitin-protein ligase TRIM37 to maintain the stability of PLK4 by reducing its ubiquitination degradation, and finally promoting centrosome amplification and EC progression in vitro. Finally, the contributing role of KIFC1 and the inhibitory effect of TRIM37 on EC development and metastasis was verified in a nude mouse xenograft model. Our study elucidated that KIFC1 depends on TRIM37-mediated reduced ubiquitination degradation of PLK4 to promote centrosome amplification and EC progression, thus providing a potential prognostic marker and promising therapeutic target for EC in the future.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.