{"title":"FindCSV: a long-read based method for detecting complex structural variations.","authors":"Yan Zheng, Xuequn Shang","doi":"10.1186/s12859-024-05937-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Structural variations play a significant role in genetic diseases and evolutionary mechanisms. Extensive research has been conducted over the past decade to detect simple structural variations, leading to the development of well-established detection methods. However, recent studies have highlighted the potentially greater impact of complex structural variations on individuals compared to simple structural variations. Despite this, the field still lacks precise detection methods specifically designed for complex structural variations. Therefore, the development of a highly efficient and accurate detection method is of utmost importance.</p><p><strong>Result: </strong>In response to this need, we propose a novel method called FindCSV, which leverages deep learning techniques and consensus sequences to enhance the detection of SVs using long-read sequencing data. Compared to current methods, FindCSV performs better in detecting complex and simple structural variations.</p><p><strong>Conclusions: </strong>FindCSV is a new method to detect complex and simple structural variations with reasonable accuracy in real and simulated data. The source code for the program is available at https://github.com/nwpuzhengyan/FindCSV .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05937-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Structural variations play a significant role in genetic diseases and evolutionary mechanisms. Extensive research has been conducted over the past decade to detect simple structural variations, leading to the development of well-established detection methods. However, recent studies have highlighted the potentially greater impact of complex structural variations on individuals compared to simple structural variations. Despite this, the field still lacks precise detection methods specifically designed for complex structural variations. Therefore, the development of a highly efficient and accurate detection method is of utmost importance.
Result: In response to this need, we propose a novel method called FindCSV, which leverages deep learning techniques and consensus sequences to enhance the detection of SVs using long-read sequencing data. Compared to current methods, FindCSV performs better in detecting complex and simple structural variations.
Conclusions: FindCSV is a new method to detect complex and simple structural variations with reasonable accuracy in real and simulated data. The source code for the program is available at https://github.com/nwpuzhengyan/FindCSV .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.