Green synthesis of cerium oxide nanoparticles usingTribulus terrestris: characterization and evaluation of antioxidant, anti-inflammatory and antibacterial efficacy against wound isolates.
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Green synthesis of cerium oxide nanoparticles using<i>Tribulus terrestris</i>: characterization and evaluation of antioxidant, anti-inflammatory and antibacterial efficacy against wound isolates.","authors":"Maganti Raghav Prasad Choudary, Muthuvel Surya, Muthupandian Saravanan","doi":"10.1088/2057-1976/ad7f59","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-drug resistance (MDR) infections are a significant global challenge, necessitating innovative and eco-friendly approaches for developing effective antimicrobial agents. This study focuses on the synthesis, characterization, and evaluation of cerium oxide nanoparticles (CeO<sub>2</sub>NPs) for their antioxidant, anti-inflammatory, and antibacterial properties. The CeO<sub>2</sub>NPs were synthesized using a<i>Tribulus terrestris</i>aqueous extract through an environmentally friendly process. Characterization techniques included UV-visible spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), x-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive x-ray (EDX) analysis. The UV-vis spectroscopy shows the presence of peak at 320 nm which confirms the formation of CeO<sub>2</sub>NPs. The FT-IR analysis of the CeO<sub>2</sub>NPs revealed several distinct functional groups, with peak values at 3287, 2920, 2340, 1640, 1538, 1066, 714, and 574 cm<sup>-1</sup>. These peaks correspond to specific functional groups, including C-H stretching in alkynes and alkanes, C=C=O, C=C, alkanes, C-O-C, C-Cl, and C-Br, indicating the presence of diverse chemical bonds within the CeO<sub>2</sub>NPs. XRD revealed that the nanoparticles were highly crystalline with a face-centered cubic structure, and SEM images showed irregularly shaped, agglomerated particles ranging from 100-150 nm. In terms of biological activity, the synthesized CeO<sub>2</sub>NPs demonstrated significant antioxidant and anti-inflammatory properties. The nanoparticles exhibited 82.54% antioxidant activity at 100 μg ml<sup>-1</sup>, closely matching the 83.1% activity of ascorbic acid. Additionally, the CeO<sub>2</sub>NPs showed 65.2% anti-inflammatory activity at the same concentration, compared to 70.1% for a standard drug. Antibacterial testing revealed that the CeO<sub>2</sub>NPs were particularly effective against multi-drug resistant strains, including<i>Pseudomonas aeruginosa</i>,<i>Enterococcus faecalis</i>, and MRSA, with moderate activity against<i>Klebsiella pneumoniae</i>. These findings suggest that CeO<sub>2</sub>NPs synthesized via<i>T. terrestris</i>have strong potential as antimicrobial agents in addressing MDR infections.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad7f59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-drug resistance (MDR) infections are a significant global challenge, necessitating innovative and eco-friendly approaches for developing effective antimicrobial agents. This study focuses on the synthesis, characterization, and evaluation of cerium oxide nanoparticles (CeO2NPs) for their antioxidant, anti-inflammatory, and antibacterial properties. The CeO2NPs were synthesized using aTribulus terrestrisaqueous extract through an environmentally friendly process. Characterization techniques included UV-visible spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), x-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive x-ray (EDX) analysis. The UV-vis spectroscopy shows the presence of peak at 320 nm which confirms the formation of CeO2NPs. The FT-IR analysis of the CeO2NPs revealed several distinct functional groups, with peak values at 3287, 2920, 2340, 1640, 1538, 1066, 714, and 574 cm-1. These peaks correspond to specific functional groups, including C-H stretching in alkynes and alkanes, C=C=O, C=C, alkanes, C-O-C, C-Cl, and C-Br, indicating the presence of diverse chemical bonds within the CeO2NPs. XRD revealed that the nanoparticles were highly crystalline with a face-centered cubic structure, and SEM images showed irregularly shaped, agglomerated particles ranging from 100-150 nm. In terms of biological activity, the synthesized CeO2NPs demonstrated significant antioxidant and anti-inflammatory properties. The nanoparticles exhibited 82.54% antioxidant activity at 100 μg ml-1, closely matching the 83.1% activity of ascorbic acid. Additionally, the CeO2NPs showed 65.2% anti-inflammatory activity at the same concentration, compared to 70.1% for a standard drug. Antibacterial testing revealed that the CeO2NPs were particularly effective against multi-drug resistant strains, includingPseudomonas aeruginosa,Enterococcus faecalis, and MRSA, with moderate activity againstKlebsiella pneumoniae. These findings suggest that CeO2NPs synthesized viaT. terrestrishave strong potential as antimicrobial agents in addressing MDR infections.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.