LMTK2 switches on canonical TGF-β1 signaling in human bronchial epithelial cells.

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Daniel F Cruz, Joshua Donovan, Ewelina D Hejenkowska, Fangping Mu, Ipsita Banerjee, Maja Köhn, Carlos M Farinha, Agnieszka Swiatecka-Urban
{"title":"LMTK2 switches on canonical TGF-β1 signaling in human bronchial epithelial cells.","authors":"Daniel F Cruz, Joshua Donovan, Ewelina D Hejenkowska, Fangping Mu, Ipsita Banerjee, Maja Köhn, Carlos M Farinha, Agnieszka Swiatecka-Urban","doi":"10.1152/ajplung.00034.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming growth factor (TGF-β1) is a critical profibrotic mediator in chronic lung disease, and there are no specific strategies to mitigate its adverse effects. Activation of TGF-β1 signaling is a multipart process involving ligands, transmembrane receptors, and transcription factors. In addition, an intricate network of adaptor proteins fine-tunes the signaling strength, duration, and activity. Namely, Smad7 recruits growth arrest and DNA damage (GADD34) protein that then interacts with the catalytic subunit of phosphoprotein phosphatase 1 (PP1c) to inactivate TGF-β receptor (TβR)-I and downregulate TGF-β1 signaling. Little is known about how TGF-β1 releases TβR-I from the GADD34-PP1c inhibition to activate its signaling. Transmembrane lemur tyrosine kinase 2 (LMTK2) is a PP1c inhibitor, and our published data showed that TGF-β1 recruits LMTK2 to the cell surface. Here, we tested the hypothesis that TGF-β1 recruits LMTK2 to inhibit PP1c, allowing activation of TβR-I. First, LMTK2 interacted with the TGF-β1 pathway in the human bronchial epithelium at multiple checkpoints. Second, TGF-β1 inhibited PP1c by an LMTK2-dependent mechanism. Third, TGF-β1 used LMTK2 to activate canonical Smad3-mediated signaling. We propose a model whereby the LMTK2-PP1c and Smad7-GADD34-PP1c complexes serve as on-and-off switches in the TGF-β1 signaling in human bronchial epithelium.<b>NEW & NOTEWORTHY</b> Activation of the transforming growth factor (TGF)-β1 signaling pathway is complex, involving many ligands, transmembrane receptors, transcription factors, and modulating proteins. The mechanisms of TGF-β1 signaling activation/inactivation are not fully understood. We propose for the first time a model by which transmembrane lemur tyrosine kinase 2 (LMTK2) forms a complex with phosphoprotein phosphatase 1 (PP1c) to activate TGF-β1 signaling and Smad7, growth arrest and DNA damage (GADD34), and PP1C form a complex to inactivate TGF-β1 signaling in human bronchial epithelium.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L769-L782"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560069/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1152/ajplung.00034.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transforming growth factor (TGF-β1) is a critical profibrotic mediator in chronic lung disease, and there are no specific strategies to mitigate its adverse effects. Activation of TGF-β1 signaling is a multipart process involving ligands, transmembrane receptors, and transcription factors. In addition, an intricate network of adaptor proteins fine-tunes the signaling strength, duration, and activity. Namely, Smad7 recruits growth arrest and DNA damage (GADD34) protein that then interacts with the catalytic subunit of phosphoprotein phosphatase 1 (PP1c) to inactivate TGF-β receptor (TβR)-I and downregulate TGF-β1 signaling. Little is known about how TGF-β1 releases TβR-I from the GADD34-PP1c inhibition to activate its signaling. Transmembrane lemur tyrosine kinase 2 (LMTK2) is a PP1c inhibitor, and our published data showed that TGF-β1 recruits LMTK2 to the cell surface. Here, we tested the hypothesis that TGF-β1 recruits LMTK2 to inhibit PP1c, allowing activation of TβR-I. First, LMTK2 interacted with the TGF-β1 pathway in the human bronchial epithelium at multiple checkpoints. Second, TGF-β1 inhibited PP1c by an LMTK2-dependent mechanism. Third, TGF-β1 used LMTK2 to activate canonical Smad3-mediated signaling. We propose a model whereby the LMTK2-PP1c and Smad7-GADD34-PP1c complexes serve as on-and-off switches in the TGF-β1 signaling in human bronchial epithelium.NEW & NOTEWORTHY Activation of the transforming growth factor (TGF)-β1 signaling pathway is complex, involving many ligands, transmembrane receptors, transcription factors, and modulating proteins. The mechanisms of TGF-β1 signaling activation/inactivation are not fully understood. We propose for the first time a model by which transmembrane lemur tyrosine kinase 2 (LMTK2) forms a complex with phosphoprotein phosphatase 1 (PP1c) to activate TGF-β1 signaling and Smad7, growth arrest and DNA damage (GADD34), and PP1C form a complex to inactivate TGF-β1 signaling in human bronchial epithelium.

LMTK2 在人类支气管上皮细胞中开启典型的 TGF-β1 信号传导。
转化生长因子(TGF-β1)是慢性肺病中一种重要的促纤维化介质,目前还没有减轻其不良影响的具体策略。TGF-β1 信号的激活是一个涉及配体、跨膜受体和转录因子的多部分过程。此外,一个由适配蛋白组成的复杂网络对信号强度、持续时间和活性进行微调。也就是说,Smad7 会招募生长停滞和 DNA 损伤(GADD34)蛋白,然后与磷蛋白磷酸酶 1(PP1c)的催化亚基相互作用,使 TGF-β 受体(TβR)-I 失活,并下调 TGF-β1 信号传导。人们对 TGF-β1 如何从 GADD34-PP1c 抑制作用中释放 TβR-I 以激活其信号传导知之甚少。跨膜狐猴酪氨酸激酶 2(LMTK2)是 PP1c 抑制剂,我们已发表的数据显示 TGF-β1 将 LMTK2 募集到细胞表面。在这里,我们检验了 TGF-β1 招募 LMTK2 以抑制 PP1c 从而激活 TβR-I 的假设。首先,在人类支气管上皮细胞中,LMTK2 在多个检查点与 TGF-β1 通路相互作用。其次,TGF-β1通过LMTK2依赖性机制抑制PP1c。第三,TGF-β1 利用 LMTK2 激活由 Smad3 介导的典型信号传导。我们提出了一个模型,即 LMTK2-PP1c 和 Smad7-GADD34-PP1c 复合物是人类支气管上皮细胞中 TGF-β1 信号传导的开关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信