Tuning optoelectronic properties of indandione-based D-A materials by malononitrile group acceptors: A DFT and TD-DFT approach

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pankaj Kumar Kushwaha, Sunil Kumar Srivastava
{"title":"Tuning optoelectronic properties of indandione-based D-A materials by malononitrile group acceptors: A DFT and TD-DFT approach","authors":"Pankaj Kumar Kushwaha,&nbsp;Sunil Kumar Srivastava","doi":"10.1007/s00894-024-06159-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Indandione-based materials are promising candidates for organic electronics, offering high electron mobility and tunable optoelectronic properties. In this study, we explore the optoelectronic and photovoltaic properties of indandione-based donor–acceptor (D-A) materials, specifically (R1) and (R2), by introducing malononitrile group acceptors into their molecular structure. These strong electron-withdrawing acceptors are designed to enhance charge transfer and overall material performance. The designed molecules (DM1–DM4) exhibit a low optical band gap of approximately 1.77 eV, significantly lower than the reference materials (R1 and R2) at around 2.24 eV in a solvent environment. Among the designed molecules, DM4 stands out with superior photovoltaic parameters, including a narrow optical band gap (1.77 eV), higher electron affinity (3.49 eV), an extended excited state lifetime (10.0 ns) owing to its low electron and hole reorganization energies (<i>λ</i><sub><i>e</i></sub> ~ 0.13 eV and <i>λ</i><sub><i>h</i></sub> ~ 0.24 eV), and improved short-circuit current density (<i>J</i><sub><i>sc</i></sub>) of ~ 15.73 mA/cm<sup>2</sup>. Notably, DM4 achieves a power conversion efficiency (PCE) of ~ 18.5%, making it an excellent candidate for device applications.</p><h3>Method</h3><p>A comprehensive computational investigation was carried out on indandione-based D-A materials with malononitrile group acceptors (DM1–DM4) using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, as implemented in Gaussian 16 software. We examined the electronic and optical properties of the proposed molecules through frontier molecular orbital (FMO) analysis, UV–Vis absorption spectra, density of states (DOS), exciton binding energy (<i>E</i><sub><i>b</i></sub>), and transition density matrix (TDM) analysis, utilizing GaussView 6.0 and Multiwfn 3.8 software. The photovoltaic parameters and power conversion efficiency (PCE) were evaluated using the Scharber and Alharbi models.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06159-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

Indandione-based materials are promising candidates for organic electronics, offering high electron mobility and tunable optoelectronic properties. In this study, we explore the optoelectronic and photovoltaic properties of indandione-based donor–acceptor (D-A) materials, specifically (R1) and (R2), by introducing malononitrile group acceptors into their molecular structure. These strong electron-withdrawing acceptors are designed to enhance charge transfer and overall material performance. The designed molecules (DM1–DM4) exhibit a low optical band gap of approximately 1.77 eV, significantly lower than the reference materials (R1 and R2) at around 2.24 eV in a solvent environment. Among the designed molecules, DM4 stands out with superior photovoltaic parameters, including a narrow optical band gap (1.77 eV), higher electron affinity (3.49 eV), an extended excited state lifetime (10.0 ns) owing to its low electron and hole reorganization energies (λe ~ 0.13 eV and λh ~ 0.24 eV), and improved short-circuit current density (Jsc) of ~ 15.73 mA/cm2. Notably, DM4 achieves a power conversion efficiency (PCE) of ~ 18.5%, making it an excellent candidate for device applications.

Method

A comprehensive computational investigation was carried out on indandione-based D-A materials with malononitrile group acceptors (DM1–DM4) using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, as implemented in Gaussian 16 software. We examined the electronic and optical properties of the proposed molecules through frontier molecular orbital (FMO) analysis, UV–Vis absorption spectra, density of states (DOS), exciton binding energy (Eb), and transition density matrix (TDM) analysis, utilizing GaussView 6.0 and Multiwfn 3.8 software. The photovoltaic parameters and power conversion efficiency (PCE) were evaluated using the Scharber and Alharbi models.

通过丙二腈基团受体调谐茚二酮基 D-A 材料的光电特性:DFT 和 TD-DFT 方法。
背景:茚二酮基材料具有高电子迁移率和可调光电特性,是有机电子学的理想候选材料。在本研究中,我们通过在分子结构中引入丙二腈基团受体,探索了基于茚二酮的供体-受体(D-A)材料,特别是(R1)和(R2)的光电和光伏特性。这些强电子吸收受体旨在增强电荷转移和材料的整体性能。设计的分子(DM1-DM4)显示出约 1.77 eV 的低光带隙,明显低于溶剂环境中约 2.24 eV 的参考材料(R1 和 R2)。在所设计的分子中,DM4 的光电参数尤为突出,包括较窄的光带隙(1.77 eV)、较高的电子亲和力(3.49 eV)、因其较低的电子和空穴重组能(λe ~ 0.13 eV 和 λh ~ 0.24 eV)而延长的激发态寿命(10.0 ns),以及较高的短路电流密度(Jsc)(约 15.73 mA/cm2)。值得注意的是,DM4 的功率转换效率(PCE)达到了约 18.5%,是器件应用的绝佳候选材料:采用密度泛函理论(DFT)和时间相关 DFT(TD-DFT)方法,对带有丙二腈基团受体的茚二酮基 D-A 材料(DM1-DM4)进行了全面的计算研究。我们利用 GaussView 6.0 和 Multiwfn 3.8 软件,通过前沿分子轨道 (FMO) 分析、紫外-可见吸收光谱、状态密度 (DOS)、激子结合能 (Eb) 和跃迁密度矩阵 (TDM) 分析,研究了拟议分子的电子和光学特性。利用 Scharber 和 Alharbi 模型对光伏参数和功率转换效率(PCE)进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信