LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-01-15 Epub Date: 2024-09-19 DOI:10.1016/j.jcis.2024.09.174
Huiwen Ding, Tianqi Jiang, Haijiao Xie, Jianqiao Wang, Pengfei Xiao
{"title":"LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>/CeO<sub>2</sub> composite can promote the effective activation of peroxymonosulfate via Co<sup>3+</sup>/Co<sup>2+</sup> cycle and realize the efficient degradation of hydroxychloroquine sulfate.","authors":"Huiwen Ding, Tianqi Jiang, Haijiao Xie, Jianqiao Wang, Pengfei Xiao","doi":"10.1016/j.jcis.2024.09.174","DOIUrl":null,"url":null,"abstract":"<p><p>Hydroxychloroquine sulfate (HCQ) is extensively utilized due to its numerous therapeutic effects. Because of its properties of high solubility, persistence, bioaccumulation, and biotoxicity, HCQ can potentially affect water bodies and human health. In this study, the LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub> material was successfully prepared by the sol-gel process, and it was applied to the experiment of degrading HCQ by activating peroxymonosulfate (PMS). The results of characterization analysis showed that LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub> material had good stability, and the problem of particle agglomeration had been solved to some extent. Compared with LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub> material, it had a larger specific surface area and more oxygen vacancies, which was helpful to improve the catalytic activity for PMS. Under optimal conditions, the LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub>/PMS system degraded 95.5 % of HCQ in 10 min. The singlet oxygen, superoxide radicals, and sulfate radicals were the main radicals for HCQ degradation. The addition of Mo<sup>6+</sup>/Mo<sup>4+</sup> and Ce<sup>4+</sup>/Ce<sup>3+</sup> promoted the redox cycle of Co<sup>3+</sup>/Co<sup>2+</sup> and enhanced the degradation rate of HCQ. Based on density functional theory and experimental analysis, three HCQ degradation pathways were proposed. The analysis of T.E.S.T software showed that the toxicity of HCQ was obviously reduced after degradation. The LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub>/PMS system displayed excellent reusability and the ability to remove pollutants in a wide range of real-world aqueous environments, with the ability to treat a wide range of pharmaceutical wastewater. In summary, this study provides some ideas for developing heterogeneous catalysts for advanced oxidation systems and provide an efficient, simple, and low-cost method for treating pharmaceutical wastewater that has good practical application potential.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 Pt C","pages":"1151-1169"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.09.174","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroxychloroquine sulfate (HCQ) is extensively utilized due to its numerous therapeutic effects. Because of its properties of high solubility, persistence, bioaccumulation, and biotoxicity, HCQ can potentially affect water bodies and human health. In this study, the LaCo0.95Mo0.05O3-CeO2 material was successfully prepared by the sol-gel process, and it was applied to the experiment of degrading HCQ by activating peroxymonosulfate (PMS). The results of characterization analysis showed that LaCo0.95Mo0.05O3-CeO2 material had good stability, and the problem of particle agglomeration had been solved to some extent. Compared with LaCo0.95Mo0.05O3 material, it had a larger specific surface area and more oxygen vacancies, which was helpful to improve the catalytic activity for PMS. Under optimal conditions, the LaCo0.95Mo0.05O3-CeO2/PMS system degraded 95.5 % of HCQ in 10 min. The singlet oxygen, superoxide radicals, and sulfate radicals were the main radicals for HCQ degradation. The addition of Mo6+/Mo4+ and Ce4+/Ce3+ promoted the redox cycle of Co3+/Co2+ and enhanced the degradation rate of HCQ. Based on density functional theory and experimental analysis, three HCQ degradation pathways were proposed. The analysis of T.E.S.T software showed that the toxicity of HCQ was obviously reduced after degradation. The LaCo0.95Mo0.05O3-CeO2/PMS system displayed excellent reusability and the ability to remove pollutants in a wide range of real-world aqueous environments, with the ability to treat a wide range of pharmaceutical wastewater. In summary, this study provides some ideas for developing heterogeneous catalysts for advanced oxidation systems and provide an efficient, simple, and low-cost method for treating pharmaceutical wastewater that has good practical application potential.

LaCo0.95Mo0.05O3/CeO2 复合材料可通过 Co3+/Co2+ 循环促进过氧单硫酸盐的有效活化,实现硫酸羟氯喹的高效降解。
硫酸羟氯喹(HCQ)具有多种治疗效果,因此被广泛使用。由于 HCQ 具有高溶解性、持久性、生物蓄积性和生物毒性等特性,可能会对水体和人类健康造成潜在影响。本研究采用溶胶-凝胶工艺成功制备了 LaCo0.95Mo0.05O3-CeO2 材料,并将其应用于活化过一硫酸盐(PMS)降解 HCQ 的实验。表征分析结果表明,LaCo0.95Mo0.05O3-CeO2 材料具有良好的稳定性,在一定程度上解决了颗粒团聚的问题。与 LaCo0.95Mo0.05O3 材料相比,它具有更大的比表面积和更多的氧空位,这有利于提高 PMS 的催化活性。在最佳条件下,LaCo0.95Mo0.05O3-CeO2/PMS 系统在 10 分钟内降解了 95.5% 的 HCQ。单线态氧、超氧自由基和硫酸根自由基是降解 HCQ 的主要自由基。Mo6+/Mo4+和Ce4+/Ce3+的加入促进了Co3+/Co2+的氧化还原循环,提高了HCQ的降解速率。基于密度泛函理论和实验分析,提出了三种 HCQ 降解途径。T.E.S.T软件分析表明,降解后的HCQ毒性明显降低。LaCo0.95Mo0.05O3-CeO2/PMS 系统具有良好的重复利用性,能在多种实际水环境中去除污染物,可处理多种制药废水。总之,本研究为开发用于高级氧化系统的异相催化剂提供了一些思路,并为处理制药废水提供了一种高效、简单、低成本的方法,具有良好的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信