A self-powered photoelectrochemical aptasensor using 3D-carbon nitride and carbon-based metal-organic frameworks for high-sensitivity detection of tetracycline in milk and water
Ying Dai, Wangui Peng, Yi Ji, Jia Wei, Junhao Che, Yongqiang Huang, Weihong Huang, Wenming Yang, Wanzhen Xu
{"title":"A self-powered photoelectrochemical aptasensor using 3D-carbon nitride and carbon-based metal-organic frameworks for high-sensitivity detection of tetracycline in milk and water","authors":"Ying Dai, Wangui Peng, Yi Ji, Jia Wei, Junhao Che, Yongqiang Huang, Weihong Huang, Wenming Yang, Wanzhen Xu","doi":"10.1111/1750-3841.17398","DOIUrl":null,"url":null,"abstract":"<p>Antibiotic residues have become a significant challenge in food safety, threatening both ecosystem integrity and human health. To combat this problem, we developed an innovative photo-powered, self-powered aptasensor that employs a novel carbon-doped three-dimensional graphitic carbon nitride (3D-CN) combined with a metal-organic framework composed of N-doped copper(I) oxide-carbon (Cu<sub>2</sub>O@C) skeletons. The 3D-CN serves as the photoanode, offering stable photocurrent production due to its three-dimensional open framework structure. The N-doped Cu<sub>2</sub>O@C acts as the photocathode, providing oxidation protection for the metal core and enhancing light absorption due to its metal-organic framework structure. A key feature of our work is exploiting the Fermi level difference between the n-type photoanode and p-type photocathode, which facilitates faster migration of photogenerated electrons toward the photocathode, thereby enhancing the sensor's self-powered effect. Experimental results reveal that upon aptamer loading, the sensor can linearly detect tetracycline (TC) within a range of 0.5 pmol/L to 300 nmol/L, with a detection limit as low as 0.13 pmol/L. It also demonstrates excellent selectivity, stability, and reproducibility, making it applicable to real samples such as milk and river water. Consequently, our research provides a highly efficient and sensitive method for monitoring TC in food, with significant practical implications and profound impacts on food safety.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"89 11","pages":"8022-8035"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17398","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic residues have become a significant challenge in food safety, threatening both ecosystem integrity and human health. To combat this problem, we developed an innovative photo-powered, self-powered aptasensor that employs a novel carbon-doped three-dimensional graphitic carbon nitride (3D-CN) combined with a metal-organic framework composed of N-doped copper(I) oxide-carbon (Cu2O@C) skeletons. The 3D-CN serves as the photoanode, offering stable photocurrent production due to its three-dimensional open framework structure. The N-doped Cu2O@C acts as the photocathode, providing oxidation protection for the metal core and enhancing light absorption due to its metal-organic framework structure. A key feature of our work is exploiting the Fermi level difference between the n-type photoanode and p-type photocathode, which facilitates faster migration of photogenerated electrons toward the photocathode, thereby enhancing the sensor's self-powered effect. Experimental results reveal that upon aptamer loading, the sensor can linearly detect tetracycline (TC) within a range of 0.5 pmol/L to 300 nmol/L, with a detection limit as low as 0.13 pmol/L. It also demonstrates excellent selectivity, stability, and reproducibility, making it applicable to real samples such as milk and river water. Consequently, our research provides a highly efficient and sensitive method for monitoring TC in food, with significant practical implications and profound impacts on food safety.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.