{"title":"An alternative method to the Takagi-Taupin equations for studying dark-field X-ray microscopy of deformed crystals.","authors":"Kun Lun Wang, Xu Kang, Xiao Ya Li","doi":"10.1107/S2053273324008295","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an alternative method to the Takagi-Taupin equations for investigating the dark-field X-ray microscopy (DFXM) of deformed crystals. In scenarios where dynamical diffraction cannot be disregarded, it is essential to assess the potential inaccuracies of data interpretation based on the kinematic diffraction theory. Unlike the Takagi-Taupin equations, this new method utilizes an exact dispersion relation, and a previously developed finite difference scheme with minor modifications is used for the numerical implementation. The numerical implementation has been validated by calculating the diffraction of a diamond crystal with three components, wherein dynamical diffraction is applicable to the first component and kinematic diffraction pertains to the remaining two. The numerical convergence is tested using diffraction intensities. In addition, the DFXM image of a diamond crystal containing a stacking fault is calculated using the new method and compared with the experimental result. The new method is also applied to calculate the DFXM image of a twisted diamond crystal, which clearly shows a result different from those obtained using the Takagi-Taupin equations.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"414-421"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273324008295","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces an alternative method to the Takagi-Taupin equations for investigating the dark-field X-ray microscopy (DFXM) of deformed crystals. In scenarios where dynamical diffraction cannot be disregarded, it is essential to assess the potential inaccuracies of data interpretation based on the kinematic diffraction theory. Unlike the Takagi-Taupin equations, this new method utilizes an exact dispersion relation, and a previously developed finite difference scheme with minor modifications is used for the numerical implementation. The numerical implementation has been validated by calculating the diffraction of a diamond crystal with three components, wherein dynamical diffraction is applicable to the first component and kinematic diffraction pertains to the remaining two. The numerical convergence is tested using diffraction intensities. In addition, the DFXM image of a diamond crystal containing a stacking fault is calculated using the new method and compared with the experimental result. The new method is also applied to calculate the DFXM image of a twisted diamond crystal, which clearly shows a result different from those obtained using the Takagi-Taupin equations.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.