Large Scale Simulations of Photosynthetic Antenna Systems: Interplay of Cooperativity and Disorder.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2024-10-10 Epub Date: 2024-10-01 DOI:10.1021/acs.jpcb.4c02406
Alessia Valzelli, Alice Boschetti, Francesco Mattiotti, Armin Kargol, Coleman Green, Fausto Borgonovi, G Luca Celardo
{"title":"Large Scale Simulations of Photosynthetic Antenna Systems: Interplay of Cooperativity and Disorder.","authors":"Alessia Valzelli, Alice Boschetti, Francesco Mattiotti, Armin Kargol, Coleman Green, Fausto Borgonovi, G Luca Celardo","doi":"10.1021/acs.jpcb.4c02406","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale simulations of light-matter interaction in natural photosynthetic antenna complexes containing more than one hundred thousands of chlorophyll molecules, comparable with natural size, have been performed. Photosynthetic antenna complexes present in Green sulfur bacteria and Purple bacteria have been analyzed using a radiative non-Hermitian Hamiltonian, well-known in the field of quantum optics, instead of the widely used dipole-dipole Frenkel Hamiltonian. This approach allows us to study ensembles of emitters beyond the small volume limit (system size much smaller than the absorbed wavelength), where the Frenkel Hamiltonian fails. When analyzed on a large scale, such structures display superradiant states much brighter than their single components. An analysis of the robustness to static disorder and dynamical (thermal) noise shows that exciton coherence in the whole photosynthetic complex is larger than the coherence found in its parts. This provides evidence that the photosynthetic complex as a whole plays a predominant role in sustaining coherences in the system even at room temperature. Our results allow a better understanding of natural photosynthetic antennae and could drive experiments to verify how the response to electromagnetic radiation depends on the size of the photosynthetic antenna.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c02406","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale simulations of light-matter interaction in natural photosynthetic antenna complexes containing more than one hundred thousands of chlorophyll molecules, comparable with natural size, have been performed. Photosynthetic antenna complexes present in Green sulfur bacteria and Purple bacteria have been analyzed using a radiative non-Hermitian Hamiltonian, well-known in the field of quantum optics, instead of the widely used dipole-dipole Frenkel Hamiltonian. This approach allows us to study ensembles of emitters beyond the small volume limit (system size much smaller than the absorbed wavelength), where the Frenkel Hamiltonian fails. When analyzed on a large scale, such structures display superradiant states much brighter than their single components. An analysis of the robustness to static disorder and dynamical (thermal) noise shows that exciton coherence in the whole photosynthetic complex is larger than the coherence found in its parts. This provides evidence that the photosynthetic complex as a whole plays a predominant role in sustaining coherences in the system even at room temperature. Our results allow a better understanding of natural photosynthetic antennae and could drive experiments to verify how the response to electromagnetic radiation depends on the size of the photosynthetic antenna.

光合天线系统的大规模模拟:合作与无序的相互作用。
我们对天然光合作用天线复合物中的光-物质相互作用进行了大规模模拟,这些天线复合物含有超过十万个叶绿素分子,与天然大小相当。我们使用量子光学领域著名的辐射非赫米提哈密顿,而不是广泛使用的偶极-偶极弗伦克尔哈密顿,对绿色硫细菌和紫色细菌中的光合天线复合体进行了分析。这种方法使我们能够研究超越小体积极限(系统尺寸远小于吸收波长)的发射器集合,在这种情况下,弗伦克尔哈密顿就失效了。在大规模分析时,这种结构会显示出比其单一成分更亮的超辐射态。对静态无序和动态(热)噪声的稳健性分析表明,整个光合复合体的激子相干性大于其各部分的相干性。这证明,即使在室温下,光合作用复合体作为一个整体在维持系统一致性方面也起着主导作用。我们的研究结果有助于更好地理解天然光合作用触角,并可推动实验验证对电磁辐射的响应如何取决于光合作用触角的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信