Employing Machine Learning Models to Predict Potential α-Glucosidase Inhibitory Plant Secondary Metabolites Targeting Type-2 Diabetes and Their In Vitro Validation.
{"title":"Employing Machine Learning Models to Predict Potential α-Glucosidase Inhibitory Plant Secondary Metabolites Targeting Type-2 Diabetes and Their <i>In Vitro</i> Validation.","authors":"Lemnaro Jamir, Hariprasad P","doi":"10.1021/acs.jcim.4c00955","DOIUrl":null,"url":null,"abstract":"<p><p>The need for new antidiabetic drugs is evident, considering the ongoing global burden of type-2 diabetes mellitus despite notable progress in drug discovery from laboratory research to clinical application. This study aimed to build machine learning (ML) models to predict potential α-glucosidase inhibitors based on the data set comprising over 537 reported plant secondary metabolite (PSM) α-glucosidase inhibitors. We assessed 35 ML models by using seven different fingerprints. The Random forest with the RDKit fingerprint was the best-performing model, with an accuracy (ACC) of 83.74% and an area under the ROC curve (AUC) of 0.803. The resulting robust ML model encompasses all reported α-glucosidase inhibitory PSMs. The model was employed to predict potential α-glucosidase inhibitors from an in-house 5810 PSM database. The model identified 965 PSMs with a prediction activity ≥0.90 for α-glucosidase inhibition. Twenty-four predicted PSMs were subjected to <i>in vitro</i> assay, and 13 were found to inhibit α-glucosidase with IC<sub>50</sub> ranging from 0.63 to 7 mg/mL. Among them, seven compounds recorded IC<sub>50</sub> values less than the standard drug acarbose and were investigated further to have optimal drug-likeness and medicinal chemistry characteristics. The ML model and <i>in vitro</i> experiments have identified nervonic acid as a promising α-glucosidase inhibitor. This compound should be further investigated for its potential integration into the diabetes treatment system.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"9150-9162"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c00955","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The need for new antidiabetic drugs is evident, considering the ongoing global burden of type-2 diabetes mellitus despite notable progress in drug discovery from laboratory research to clinical application. This study aimed to build machine learning (ML) models to predict potential α-glucosidase inhibitors based on the data set comprising over 537 reported plant secondary metabolite (PSM) α-glucosidase inhibitors. We assessed 35 ML models by using seven different fingerprints. The Random forest with the RDKit fingerprint was the best-performing model, with an accuracy (ACC) of 83.74% and an area under the ROC curve (AUC) of 0.803. The resulting robust ML model encompasses all reported α-glucosidase inhibitory PSMs. The model was employed to predict potential α-glucosidase inhibitors from an in-house 5810 PSM database. The model identified 965 PSMs with a prediction activity ≥0.90 for α-glucosidase inhibition. Twenty-four predicted PSMs were subjected to in vitro assay, and 13 were found to inhibit α-glucosidase with IC50 ranging from 0.63 to 7 mg/mL. Among them, seven compounds recorded IC50 values less than the standard drug acarbose and were investigated further to have optimal drug-likeness and medicinal chemistry characteristics. The ML model and in vitro experiments have identified nervonic acid as a promising α-glucosidase inhibitor. This compound should be further investigated for its potential integration into the diabetes treatment system.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.