Casian Miron, George Ciubotariu, Alexandru Păsărică, Radu Timofte
{"title":"Efficient End-to-End Convolutional Architecture for Point-of-Gaze Estimation.","authors":"Casian Miron, George Ciubotariu, Alexandru Păsărică, Radu Timofte","doi":"10.3390/jimaging10090237","DOIUrl":null,"url":null,"abstract":"<p><p>Point-of-gaze estimation is part of a larger set of tasks aimed at improving user experience, providing business insights, or facilitating interactions with different devices. There has been a growing interest in this task, particularly due to the need for upgrades in e-meeting platforms during the pandemic when on-site activities were no longer possible for educational institutions, corporations, and other organizations. Current research advancements are focusing on more complex methodologies for data collection and task implementation, creating a gap that we intend to address with our contributions. Thus, we introduce a methodology for data acquisition that shows promise due to its nonrestrictive and straightforward nature, notably increasing the yield of collected data without compromising diversity or quality. Additionally, we present a novel and efficient convolutional neural network specifically tailored for calibration-free point-of-gaze estimation that outperforms current state-of-the-art methods on the MPIIFaceGaze dataset by a substantial margin, and sets a strong baseline on our own data.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433013/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10090237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Point-of-gaze estimation is part of a larger set of tasks aimed at improving user experience, providing business insights, or facilitating interactions with different devices. There has been a growing interest in this task, particularly due to the need for upgrades in e-meeting platforms during the pandemic when on-site activities were no longer possible for educational institutions, corporations, and other organizations. Current research advancements are focusing on more complex methodologies for data collection and task implementation, creating a gap that we intend to address with our contributions. Thus, we introduce a methodology for data acquisition that shows promise due to its nonrestrictive and straightforward nature, notably increasing the yield of collected data without compromising diversity or quality. Additionally, we present a novel and efficient convolutional neural network specifically tailored for calibration-free point-of-gaze estimation that outperforms current state-of-the-art methods on the MPIIFaceGaze dataset by a substantial margin, and sets a strong baseline on our own data.