A Comprehensive Evaluation of Arbitrary Image Style Transfer Methods.

Zijun Zhou, Fan Tang, Yuxin Zhang, Oliver Deussen, Juan Cao, Weiming Dong, Xiangtao Li, Tong-Yee Lee
{"title":"A Comprehensive Evaluation of Arbitrary Image Style Transfer Methods.","authors":"Zijun Zhou, Fan Tang, Yuxin Zhang, Oliver Deussen, Juan Cao, Weiming Dong, Xiangtao Li, Tong-Yee Lee","doi":"10.1109/TVCG.2024.3466964","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the remarkable process in the field of arbitrary image style transfer (AST), inconsistent evaluation continues to plague style transfer research. Existing methods often suffer from limited objective evaluation and inconsistent subjective feedback, hindering reliable comparisons among AST variants. In this study, we propose a multi-granularity assessment system that combines standardized objective and subjective evaluations. We collect a fine-grained dataset considering a range of image contexts such as different scenes, object complexities, and rich parsing information from multiple sources. Objective and subjective studies are conducted using the collected dataset. Specifically, we innovate on traditional subjective studies by developing an online evaluation system utilizing a combination of point-wise, pair-wise, and group-wise questionnaires. Finally, we bridge the gap between objective and subjective evaluations by examining the consistency between the results from the two studies. We experimentally evaluate CNN-based, flow-based, transformer-based, and diffusion-based AST methods by the proposed multi-granularity assessment system, which lays the foundation for a reliable and robust evaluation. Providing standardized measures, objective data, and detailed subjective feedback empowers researchers to make informed comparisons and drive innovation in this rapidly evolving field. Finally, for the collected dataset and our online evaluation system, please see http://ivc.ia.ac.cn.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2024.3466964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the remarkable process in the field of arbitrary image style transfer (AST), inconsistent evaluation continues to plague style transfer research. Existing methods often suffer from limited objective evaluation and inconsistent subjective feedback, hindering reliable comparisons among AST variants. In this study, we propose a multi-granularity assessment system that combines standardized objective and subjective evaluations. We collect a fine-grained dataset considering a range of image contexts such as different scenes, object complexities, and rich parsing information from multiple sources. Objective and subjective studies are conducted using the collected dataset. Specifically, we innovate on traditional subjective studies by developing an online evaluation system utilizing a combination of point-wise, pair-wise, and group-wise questionnaires. Finally, we bridge the gap between objective and subjective evaluations by examining the consistency between the results from the two studies. We experimentally evaluate CNN-based, flow-based, transformer-based, and diffusion-based AST methods by the proposed multi-granularity assessment system, which lays the foundation for a reliable and robust evaluation. Providing standardized measures, objective data, and detailed subjective feedback empowers researchers to make informed comparisons and drive innovation in this rapidly evolving field. Finally, for the collected dataset and our online evaluation system, please see http://ivc.ia.ac.cn.

全面评估任意图像风格转换方法
尽管任意图像风格转换(AST)领域取得了令人瞩目的进展,但不一致的评估仍然困扰着风格转换研究。现有的方法往往存在客观评价有限和主观反馈不一致的问题,阻碍了对 AST 变体进行可靠的比较。在本研究中,我们提出了一种结合标准化客观评价和主观评价的多粒度评估系统。我们收集了一个细粒度数据集,其中考虑到了一系列图像上下文,如不同场景、对象复杂性以及来自多个来源的丰富解析信息。利用收集到的数据集进行客观和主观研究。具体来说,我们在传统主观研究的基础上进行了创新,开发了一个在线评估系统,综合利用了点式、对式和组式问卷。最后,我们通过检验两项研究结果的一致性,缩小了客观评价与主观评价之间的差距。我们通过所提出的多粒度评估系统对基于 CNN、基于流量、基于变压器和基于扩散的 AST 方法进行了实验性评估,为可靠、稳健的评估奠定了基础。通过提供标准化的测量方法、客观数据和详细的主观反馈,研究人员可以进行有依据的比较,并推动这一快速发展领域的创新。最后,有关收集的数据集和我们的在线评估系统,请参见 http://ivc.ia.ac.cn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信