Temporally Multi-Scale Sparse Self-Attention for Physical Activity Data Imputation.

Hui Wei, Maxwell A Xu, Colin Samplawski, James M Rehg, Santosh Kumar, Benjamin M Marlin
{"title":"Temporally Multi-Scale Sparse Self-Attention for Physical Activity Data Imputation.","authors":"Hui Wei, Maxwell A Xu, Colin Samplawski, James M Rehg, Santosh Kumar, Benjamin M Marlin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable sensors enable health researchers to continuously collect data pertaining to the physiological state of individuals in real-world settings. However, such data can be subject to extensive missingness due to a complex combination of factors. In this work, we study the problem of imputation of missing step count data, one of the most ubiquitous forms of wearable sensor data. We construct a novel and large scale data set consisting of a training set with over 3 million hourly step count observations and a test set with over 2.5 million hourly step count observations. We propose a domain knowledge-informed sparse self-attention model for this task that captures the temporal multi-scale nature of step-count data. We assess the performance of the model relative to baselines and conduct ablation studies to verify our specific model designs.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"248 ","pages":"137-154"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable sensors enable health researchers to continuously collect data pertaining to the physiological state of individuals in real-world settings. However, such data can be subject to extensive missingness due to a complex combination of factors. In this work, we study the problem of imputation of missing step count data, one of the most ubiquitous forms of wearable sensor data. We construct a novel and large scale data set consisting of a training set with over 3 million hourly step count observations and a test set with over 2.5 million hourly step count observations. We propose a domain knowledge-informed sparse self-attention model for this task that captures the temporal multi-scale nature of step-count data. We assess the performance of the model relative to baselines and conduct ablation studies to verify our specific model designs.

用于体育锻炼数据估算的时空多尺度稀疏自我关注。
可穿戴传感器使健康研究人员能够在真实世界环境中持续收集与个人生理状态有关的数据。然而,由于各种因素的复杂组合,这些数据可能会出现大量缺失。在这项工作中,我们研究了缺失步数数据的估算问题,这是最普遍的可穿戴传感器数据形式之一。我们构建了一个新颖的大规模数据集,包括一个包含 300 多万个每小时步数观测值的训练集和一个包含 250 多万个每小时步数观测值的测试集。我们为这项任务提出了一个以领域知识为基础的稀疏自我注意力模型,该模型能捕捉到步数数据的时间多尺度特性。我们评估了该模型相对于基线的性能,并进行了消融研究,以验证我们的特定模型设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信