{"title":"A novel hypothesis about mechanism of thalidomide action on pattern formation","authors":"Denis Touroutine , Nadya Morozova","doi":"10.1016/j.biosystems.2024.105344","DOIUrl":null,"url":null,"abstract":"<div><div>Morphogenesis, the complex process governing the formation of functional living structures, is regulated by a multitude of molecular mechanisms at various levels. While research in recent decades has shed light on many pathways involved in morphogenesis, none singularly accounts for the precise geometric shapes of organisms and their components in space. To bridge this conceptual gap between specific molecular mechanisms and the creation of definitive morphological forms, we have proposed the \"epigenetic code hypothesis\" in our previous work. In this framework, \"epigenetic\" means any inheritable cellular information beyond the genetic code that regulates cell fate alongside genetic information. In this study, we conduct a comprehensive analysis of thalidomide's teratogenic effects through the lens of our proposed \"epigenetic code\" theory, revealing significant indirect support for our hypothesis. We also explore the structural and functional parallels between thalidomide and auxin.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"246 ","pages":"Article 105344"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724002296","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Morphogenesis, the complex process governing the formation of functional living structures, is regulated by a multitude of molecular mechanisms at various levels. While research in recent decades has shed light on many pathways involved in morphogenesis, none singularly accounts for the precise geometric shapes of organisms and their components in space. To bridge this conceptual gap between specific molecular mechanisms and the creation of definitive morphological forms, we have proposed the "epigenetic code hypothesis" in our previous work. In this framework, "epigenetic" means any inheritable cellular information beyond the genetic code that regulates cell fate alongside genetic information. In this study, we conduct a comprehensive analysis of thalidomide's teratogenic effects through the lens of our proposed "epigenetic code" theory, revealing significant indirect support for our hypothesis. We also explore the structural and functional parallels between thalidomide and auxin.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.