Kedith Sawangsri, Steven Makowka, Sompop Bencharit, Hyeongil Kim
{"title":"Effect of sintering cycle on the strength and translucency of multilayered zirconia.","authors":"Kedith Sawangsri, Steven Makowka, Sompop Bencharit, Hyeongil Kim","doi":"10.1111/jopr.13956","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A newly introduced sintering protocol promises to offer higher translucency while not significantly compromising the flexural strength of the material. However, the effect of the novel sintering protocol has not been thoroughly validated. The purpose of this study was to measure and compare the effect of two sintering protocols on the translucency and flexural strength of two multilayered zirconia materials.</p><p><strong>Materials and methods: </strong>Two types of multilayered zirconia materials (ZirCAD Prime and Prime esthetic) were selected. Presintered disk specimens were obtained from Translucent, Gradient, and Dentin layers (n = 20). The disks were allocated to 2 groups: standard sintering protocol (peak temperature 1500°C) and high translucency sintering protocol (peak temperature 1600°C). After the sintering process, 10 specimens from each group were randomly selected. The optical values (L<sup>*</sup>, a<sup>*</sup>, b<sup>*</sup>) were measured and used to assess translucency using the relative translucency parameter (RTP<sub>00</sub>) and translucency differences (ΔRTP<sub>00</sub>). Then, all 20 specimens were tested for biaxial flexural strength. The outcomes were analyzed. The analysis of variance is used to analyze any significant effects on translucency and flexural strength. Then, any significant difference in the translucency and flexural strength between all pairs of materials was analyzed using Bonferroni-corrected Student's t-test (α = 0.05).</p><p><strong>Results: </strong>The high translucency sintering protocol significantly decreased biaxial strength in the Prime translucent and dentine layer, Prime esthetic translucent, and gradient layer. RTP<sub>00</sub> was significantly reduced in the Prime gradient and Prime esthetic gradient layer when sintered with a high translucency protocol. The lowest ΔRTP<sub>00</sub> was observed in the Prime dentine layer, while the highest ΔRTP<sub>00</sub> was observed in the Prime esthetic dentin layer.</p><p><strong>Conclusions: </strong>High translucency protocol significantly lowers the biaxial flexural strength of both multilayered materials, but the alteration in translucency is within clinically acceptable thresholds (TAT<sub>00</sub> = 2.62).</p>","PeriodicalId":49152,"journal":{"name":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jopr.13956","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: A newly introduced sintering protocol promises to offer higher translucency while not significantly compromising the flexural strength of the material. However, the effect of the novel sintering protocol has not been thoroughly validated. The purpose of this study was to measure and compare the effect of two sintering protocols on the translucency and flexural strength of two multilayered zirconia materials.
Materials and methods: Two types of multilayered zirconia materials (ZirCAD Prime and Prime esthetic) were selected. Presintered disk specimens were obtained from Translucent, Gradient, and Dentin layers (n = 20). The disks were allocated to 2 groups: standard sintering protocol (peak temperature 1500°C) and high translucency sintering protocol (peak temperature 1600°C). After the sintering process, 10 specimens from each group were randomly selected. The optical values (L*, a*, b*) were measured and used to assess translucency using the relative translucency parameter (RTP00) and translucency differences (ΔRTP00). Then, all 20 specimens were tested for biaxial flexural strength. The outcomes were analyzed. The analysis of variance is used to analyze any significant effects on translucency and flexural strength. Then, any significant difference in the translucency and flexural strength between all pairs of materials was analyzed using Bonferroni-corrected Student's t-test (α = 0.05).
Results: The high translucency sintering protocol significantly decreased biaxial strength in the Prime translucent and dentine layer, Prime esthetic translucent, and gradient layer. RTP00 was significantly reduced in the Prime gradient and Prime esthetic gradient layer when sintered with a high translucency protocol. The lowest ΔRTP00 was observed in the Prime dentine layer, while the highest ΔRTP00 was observed in the Prime esthetic dentin layer.
Conclusions: High translucency protocol significantly lowers the biaxial flexural strength of both multilayered materials, but the alteration in translucency is within clinically acceptable thresholds (TAT00 = 2.62).
期刊介绍:
The Journal of Prosthodontics promotes the advanced study and practice of prosthodontics, implant, esthetic, and reconstructive dentistry. It is the official journal of the American College of Prosthodontists, the American Dental Association-recognized voice of the Specialty of Prosthodontics. The journal publishes evidence-based original scientific articles presenting information that is relevant and useful to prosthodontists. Additionally, it publishes reports of innovative techniques, new instructional methodologies, and instructive clinical reports with an interdisciplinary flair. The journal is particularly focused on promoting the study and use of cutting-edge technology and positioning prosthodontists as the early-adopters of new technology in the dental community.