Decoding the Promotional Effect of Iron in Bimetallic Pt–Fe-nanoparticles on the Low Temperature Reverse Water–Gas Shift Reaction

IF 3.784 3区 化学 Q1 Chemistry
Colin Hansen, Wei Zhou, Enzo Brack, Yuhao Wang, Chunliang Wang, James Paterson, Jamie Southouse, Christophe Copéret
{"title":"Decoding the Promotional Effect of Iron in Bimetallic Pt–Fe-nanoparticles on the Low Temperature Reverse Water–Gas Shift Reaction","authors":"Colin Hansen, Wei Zhou, Enzo Brack, Yuhao Wang, Chunliang Wang, James Paterson, Jamie Southouse, Christophe Copéret","doi":"10.1021/jacs.4c08517","DOIUrl":null,"url":null,"abstract":"The reverse water–gas shift (RWGS) reaction is a key technology of the chemical industry, central to the emerging circular carbon economy. Pt-based catalysts have previously been shown to effectively promote RWGS, especially when modified by promoter elements. However, their active states are still poorly understood. Here, we show that the intimate incorporation of an iron promoter into metal-oxide-supported Pt-based nanoparticles can increase their activity and selectivity for the low temperature reverse water–gas shift (LT-RWGS) substantially and drastically outperform unpromoted Pt-based materials. Specifically, the study explores the promotional effect of iron in Pt–Fe bimetallic systems supported on silica (Pt<sub><i>x</i></sub>Fe<sub><i>y</i></sub>@SiO<sub>2</sub>) prepared by surface organometallic chemistry (SOMC). The most active catalyst (Pt<sub>1</sub>Fe<sub>1</sub>@SiO<sub>2</sub>) shows high selectivity (&gt;99% CO) toward CO at a formation rate of 0.192 mol<sub>CO</sub> h<sup>–1</sup> g<sub>cat</sub><sup>–1</sup>, which is significantly higher than that of monometallic Pt@SiO<sub>2</sub> (96% sel. and 0.022 mol<sub>CO</sub> h<sup>–1</sup> g<sub>cat</sub><sup>–1</sup>). In-situ diffuse reflectance FT-IR spectroscopy (DRIFTS) and X-ray absorption spectroscopy (XAS) indicate a dynamic process at the catalyst surface under the reaction conditions, revealing distinct reaction pathways for the monometallic Pt@SiO<sub>2</sub> and bimetallic Pt<sub><i>x</i></sub>Fe<sub><i>y</i></sub>@SiO<sub>2</sub> systems.","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c08517","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

The reverse water–gas shift (RWGS) reaction is a key technology of the chemical industry, central to the emerging circular carbon economy. Pt-based catalysts have previously been shown to effectively promote RWGS, especially when modified by promoter elements. However, their active states are still poorly understood. Here, we show that the intimate incorporation of an iron promoter into metal-oxide-supported Pt-based nanoparticles can increase their activity and selectivity for the low temperature reverse water–gas shift (LT-RWGS) substantially and drastically outperform unpromoted Pt-based materials. Specifically, the study explores the promotional effect of iron in Pt–Fe bimetallic systems supported on silica (PtxFey@SiO2) prepared by surface organometallic chemistry (SOMC). The most active catalyst (Pt1Fe1@SiO2) shows high selectivity (>99% CO) toward CO at a formation rate of 0.192 molCO h–1 gcat–1, which is significantly higher than that of monometallic Pt@SiO2 (96% sel. and 0.022 molCO h–1 gcat–1). In-situ diffuse reflectance FT-IR spectroscopy (DRIFTS) and X-ray absorption spectroscopy (XAS) indicate a dynamic process at the catalyst surface under the reaction conditions, revealing distinct reaction pathways for the monometallic Pt@SiO2 and bimetallic PtxFey@SiO2 systems.

Abstract Image

解码双金属铂-铁-纳米粒子中的铁对低温反向水-气变换反应的促进作用
水煤气反向转化(RWGS)反应是化学工业的一项关键技术,也是新兴循环碳经济的核心。此前已有研究表明,铂基催化剂能有效促进 RWGS 反应,尤其是在经过促进剂元素修饰的情况下。然而,人们对它们的活性状态仍然知之甚少。在这里,我们展示了在金属氧化物支撑的铂基纳米粒子中紧密加入铁促进剂,可大幅提高其在低温水气反向变换(LT-RWGS)中的活性和选择性,并大大优于未加入促进剂的铂基材料。具体而言,本研究探讨了通过表面有机金属化学(SOMC)制备的、支撑在二氧化硅(PtxFey@SiO2)上的铂铁双金属体系中铁的促进作用。活性最高的催化剂(Pt1Fe1@SiO2)对一氧化碳具有高选择性(99% CO),其生成率为 0.192 molCO h-1 gcat-1,明显高于单金属 Pt@SiO2(96% sel.和 0.022 molCO h-1 gcat-1)。原位漫反射傅立叶变换红外光谱(DRIFTS)和 X 射线吸收光谱(XAS)表明,在反应条件下催化剂表面存在一个动态过程,揭示了单金属 Pt@SiO2 和双金属 PtxFey@SiO2 系统的不同反应途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Combinatorial Science
ACS Combinatorial Science CHEMISTRY, APPLIED-CHEMISTRY, MEDICINAL
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信