Rapid generation of long, chemically modified pegRNAs for prime editing

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xinlin Lei, Anhui Huang, Didi Chen, Xuebin Wang, Ruijin Ji, Jinlin Wang, Yizhou Zhang, Yuming Zhang, Shuhan Lu, Kun Zhang, Qiubing Chen, Ying Zhang, Hao Yin
{"title":"Rapid generation of long, chemically modified pegRNAs for prime editing","authors":"Xinlin Lei, Anhui Huang, Didi Chen, Xuebin Wang, Ruijin Ji, Jinlin Wang, Yizhou Zhang, Yuming Zhang, Shuhan Lu, Kun Zhang, Qiubing Chen, Ying Zhang, Hao Yin","doi":"10.1038/s41587-024-02394-x","DOIUrl":null,"url":null,"abstract":"<p>The editing efficiencies of prime editing (PE) using ribonucleoprotein (RNP) and RNA delivery are not optimal due to the challenges in solid-phase synthesis of long PE guide RNA (pegRNA) (&gt;125 nt). Here, we develop an efficient, rapid and cost-effective method for generating chemically modified pegRNA (125–145 nt) and engineered pegRNA (epegRNA) (170–190 nt). We use an optimized splint ligation approach and achieve approximately 90% production efficiency for these RNAs, referred to as L-pegRNA and L-epegRNA. L-epegRNA demonstrates enhanced editing efficiencies across various cell lines and human primary cells with improvements of up to more than tenfold when using RNP delivery and several hundredfold with RNA delivery of PE, compared to epegRNA produced by in vitro transcription. L-epegRNA-mediated RNP delivery also outperforms plasmid-encoded PE in most comparisons. Our study provides a solution to obtaining high-quality pegRNA and epegRNA with desired chemical modifications, paving the way for the use of PE in therapeutics and various other fields.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":null,"pages":null},"PeriodicalIF":33.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02394-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The editing efficiencies of prime editing (PE) using ribonucleoprotein (RNP) and RNA delivery are not optimal due to the challenges in solid-phase synthesis of long PE guide RNA (pegRNA) (>125 nt). Here, we develop an efficient, rapid and cost-effective method for generating chemically modified pegRNA (125–145 nt) and engineered pegRNA (epegRNA) (170–190 nt). We use an optimized splint ligation approach and achieve approximately 90% production efficiency for these RNAs, referred to as L-pegRNA and L-epegRNA. L-epegRNA demonstrates enhanced editing efficiencies across various cell lines and human primary cells with improvements of up to more than tenfold when using RNP delivery and several hundredfold with RNA delivery of PE, compared to epegRNA produced by in vitro transcription. L-epegRNA-mediated RNP delivery also outperforms plasmid-encoded PE in most comparisons. Our study provides a solution to obtaining high-quality pegRNA and epegRNA with desired chemical modifications, paving the way for the use of PE in therapeutics and various other fields.

Abstract Image

快速生成用于素材编辑的化学修饰长 pegRNA
由于固相合成长PE引导RNA(pegRNA)(125 nt)的难题,使用核糖核蛋白(RNP)和RNA递送的质粒编辑(prime editing,PE)的编辑效率并不理想。在此,我们开发了一种高效、快速、经济的方法,用于生成化学修饰的 pegRNA(125-145 nt)和工程化的 pegRNA(epegRNA)(170-190 nt)。我们采用优化的夹板连接方法,这些 RNA 的生产效率约为 90%,分别称为 L-pegRNA 和 L-epegRNA。与体外转录产生的 epegRNA 相比,L-epegRNA 在各种细胞系和人类原代细胞中的编辑效率都有所提高,使用 RNP 运送时可提高 10 倍以上,使用 PE 的 RNA 运送时可提高几百倍。在大多数比较中,L-epegRNA介导的RNP递送也优于质粒编码的PE。我们的研究为获得具有所需化学修饰的高质量 pegRNA 和 epegRNA 提供了一种解决方案,为 PE 在治疗学和其他各种领域的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信