Karin Slater, Paul N. Schofield, James Wright, Paul Clift, Anushka Irani, William Bradlow, Furqan Aziz, Georgios V. Gkoutos
{"title":"Talking about diseases; developing a model of patient and public-prioritised disease phenotypes","authors":"Karin Slater, Paul N. Schofield, James Wright, Paul Clift, Anushka Irani, William Bradlow, Furqan Aziz, Georgios V. Gkoutos","doi":"10.1038/s41746-024-01257-8","DOIUrl":null,"url":null,"abstract":"Deep phenotyping describes the use of standardised terminologies to create comprehensive phenotypic descriptions of biomedical phenomena. These characterisations facilitate secondary analysis, evidence synthesis, and practitioner awareness, thereby guiding patient care. The vast majority of this knowledge is derived from sources that describe an academic understanding of disease, including academic literature and experimental databases. Previous work indicates a gulf between the priorities, perspectives, and perceptions held by different healthcare stakeholders. Using social media data, we develop a phenotype model that represents a public perspective on disease and compare this with a model derived from a combination of existing academic phenotype databases. We identified 52,198 positive disease-phenotype associations from social media across 311 diseases. We further identified 24,618 novel phenotype associations not shared by the biomedical and literature-derived phenotype model across 304 diseases, of which we considered 14,531 significant. Manifestations of disease affecting quality of life, and concerning endocrine, digestive, and reproductive diseases were over-represented in the social media phenotype model. An expert clinical review found that social media-derived associations were considered similarly well-established to those derived from literature, and were seen significantly more in patient clinical encounters. The phenotype model recovered from social media presents a significantly different perspective than existing resources derived from biomedical databases and literature, providing a large number of associations novel to the latter dataset. We propose that the integration and interrogation of these public perspectives on the disease can inform clinical awareness, improve secondary analysis, and bridge understanding and priorities across healthcare stakeholders.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":null,"pages":null},"PeriodicalIF":12.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01257-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01257-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Deep phenotyping describes the use of standardised terminologies to create comprehensive phenotypic descriptions of biomedical phenomena. These characterisations facilitate secondary analysis, evidence synthesis, and practitioner awareness, thereby guiding patient care. The vast majority of this knowledge is derived from sources that describe an academic understanding of disease, including academic literature and experimental databases. Previous work indicates a gulf between the priorities, perspectives, and perceptions held by different healthcare stakeholders. Using social media data, we develop a phenotype model that represents a public perspective on disease and compare this with a model derived from a combination of existing academic phenotype databases. We identified 52,198 positive disease-phenotype associations from social media across 311 diseases. We further identified 24,618 novel phenotype associations not shared by the biomedical and literature-derived phenotype model across 304 diseases, of which we considered 14,531 significant. Manifestations of disease affecting quality of life, and concerning endocrine, digestive, and reproductive diseases were over-represented in the social media phenotype model. An expert clinical review found that social media-derived associations were considered similarly well-established to those derived from literature, and were seen significantly more in patient clinical encounters. The phenotype model recovered from social media presents a significantly different perspective than existing resources derived from biomedical databases and literature, providing a large number of associations novel to the latter dataset. We propose that the integration and interrogation of these public perspectives on the disease can inform clinical awareness, improve secondary analysis, and bridge understanding and priorities across healthcare stakeholders.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.