Learning With Explicit Shape Priors for Medical Image Segmentation

Xin You;Junjun He;Jie Yang;Yun Gu
{"title":"Learning With Explicit Shape Priors for Medical Image Segmentation","authors":"Xin You;Junjun He;Jie Yang;Yun Gu","doi":"10.1109/TMI.2024.3469214","DOIUrl":null,"url":null,"abstract":"Medical image segmentation is a fundamental task for medical image analysis and surgical planning. In recent years, UNet-based networks have prevailed in the field of medical image segmentation. However, convolutional neural networks (CNNs) suffer from limited receptive fields, which fail to model the long-range dependency of organs or tumors. Besides, these models are heavily dependent on the training of the final segmentation head. And existing methods can not well address aforementioned limitations simultaneously. Hence, in our work, we proposed a novel shape prior module (SPM), which can explicitly introduce shape priors to promote the segmentation performance of UNet-based models. The explicit shape priors consist of global and local shape priors. The former with coarse shape representations provides networks with capabilities to model global contexts. The latter with finer shape information serves as additional guidance to relieve the heavy dependence on the learnable prototype in the segmentation head. To evaluate the effectiveness of SPM, we conduct experiments on three challenging public datasets. And our proposed model achieves state-of-the-art performance. Furthermore, SPM can serve as a plug-and-play structure into classic CNNs and Transformer-based backbones, facilitating the segmentation task on different datasets. Source codes are available at <uri>https://github.com/AlexYouXin/Explicit-Shape-Priors</uri>.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"927-940"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10697195/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image segmentation is a fundamental task for medical image analysis and surgical planning. In recent years, UNet-based networks have prevailed in the field of medical image segmentation. However, convolutional neural networks (CNNs) suffer from limited receptive fields, which fail to model the long-range dependency of organs or tumors. Besides, these models are heavily dependent on the training of the final segmentation head. And existing methods can not well address aforementioned limitations simultaneously. Hence, in our work, we proposed a novel shape prior module (SPM), which can explicitly introduce shape priors to promote the segmentation performance of UNet-based models. The explicit shape priors consist of global and local shape priors. The former with coarse shape representations provides networks with capabilities to model global contexts. The latter with finer shape information serves as additional guidance to relieve the heavy dependence on the learnable prototype in the segmentation head. To evaluate the effectiveness of SPM, we conduct experiments on three challenging public datasets. And our proposed model achieves state-of-the-art performance. Furthermore, SPM can serve as a plug-and-play structure into classic CNNs and Transformer-based backbones, facilitating the segmentation task on different datasets. Source codes are available at https://github.com/AlexYouXin/Explicit-Shape-Priors.
利用显式形状先验学习医学图像分割
医学图像分割是医学图像分析和手术计划的基础工作。近年来,基于unet的网络在医学图像分割领域占据主导地位。然而,卷积神经网络(cnn)的感受野有限,无法模拟器官或肿瘤的长期依赖。此外,这些模型在很大程度上依赖于最终分割头的训练。现有的方法不能很好地同时解决上述限制。因此,在我们的工作中,我们提出了一种新的形状先验模块(SPM),它可以显式地引入形状先验,以提高基于unet的模型的分割性能。显式形状先验包括全局形状先验和局部形状先验。前者具有粗糙形状表示,为网络提供了对全局上下文建模的能力。后者具有更精细的形状信息,作为额外的指导,减轻了分割头对可学习原型的严重依赖。为了评估SPM的有效性,我们在三个具有挑战性的公共数据集上进行了实验。我们提出的模型达到了最先进的性能。此外,SPM可以作为一个即插拔的结构,用于经典cnn和基于transformer的骨干网,方便在不同数据集上的分割任务。源代码可从https://github.com/AlexYouXin/Explicit-Shape-Priors获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信