Unveiling the intermolecular interactions in ethyl acetate + polyethylene glycol 200/300/400/600 binary mixtures by using densities, speeds of sound, excess properties and FTIR spectra at different temperatures
{"title":"Unveiling the intermolecular interactions in ethyl acetate + polyethylene glycol 200/300/400/600 binary mixtures by using densities, speeds of sound, excess properties and FTIR spectra at different temperatures","authors":"Nidhi, Anil Kumar Nain","doi":"10.1016/j.jct.2024.107391","DOIUrl":null,"url":null,"abstract":"<div><div>The intermolecular interactions in ethyl acetate + polyethylene glycols (PEG) mixtures were examined by means of the excess and partial molar properties and FTIR spectra. The measurements of density and speed of sound of ethyl acetate + polyethylene glycols (PEG 200, PEG 300, PEG 400 and PEG 600) binary mixtures have been carried out over whole composition range at temperature from 293.15 K to 323.15 K and pressure, p = 100 kPa. The <em>ρ</em> and <em>u</em> data have been used to calculate excess properties, <em>viz.</em>, excess molar volume, excess isentropic compressibility, excess intermolecular free length, excess speed of sound and excess molar isentropic compressibility. In addition, the partial molar volume/compressibility; excess partial molar volume/compressibility of the components over the entire composition range, and at infinite dilution have also been calculated. The variations in these properties with composition and temperature have been conversed in terms of existing intermolecular interactions in these mixtures. The ethyl acetate-PEG interactions in these mixtures follow the order: PEG 600 > PEG 400 > PEG 300 > PEG 200. The speeds of sound were estimated theoretically by using the scaled particle theory and were compared with the experimental values. Furthermore, FT-IR spectra of pure ethyl acetate, PEG 200 and their equimolar mixture were also recorded and analysed to confirm the prevailing intermolecular interactions.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961424001447","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The intermolecular interactions in ethyl acetate + polyethylene glycols (PEG) mixtures were examined by means of the excess and partial molar properties and FTIR spectra. The measurements of density and speed of sound of ethyl acetate + polyethylene glycols (PEG 200, PEG 300, PEG 400 and PEG 600) binary mixtures have been carried out over whole composition range at temperature from 293.15 K to 323.15 K and pressure, p = 100 kPa. The ρ and u data have been used to calculate excess properties, viz., excess molar volume, excess isentropic compressibility, excess intermolecular free length, excess speed of sound and excess molar isentropic compressibility. In addition, the partial molar volume/compressibility; excess partial molar volume/compressibility of the components over the entire composition range, and at infinite dilution have also been calculated. The variations in these properties with composition and temperature have been conversed in terms of existing intermolecular interactions in these mixtures. The ethyl acetate-PEG interactions in these mixtures follow the order: PEG 600 > PEG 400 > PEG 300 > PEG 200. The speeds of sound were estimated theoretically by using the scaled particle theory and were compared with the experimental values. Furthermore, FT-IR spectra of pure ethyl acetate, PEG 200 and their equimolar mixture were also recorded and analysed to confirm the prevailing intermolecular interactions.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.