{"title":"Curvature bound for Lp Minkowski problem","authors":"Kyeongsu Choi , Minhyun Kim , Taehun Lee","doi":"10.1016/j.aim.2024.109959","DOIUrl":null,"url":null,"abstract":"<div><div>We establish curvature estimates for anisotropic Gauss curvature flows. By using this, we show that given a measure <em>μ</em> with a positive smooth density <em>f</em>, any solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>p</mi><mo>≤</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> is a hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span>. This is a sharp result because for each <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> there exists a convex hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>+</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> which is a solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem for a positive smooth density <em>f</em>. In particular, the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> regularity is optimal in the case <span><math><mi>p</mi><mo>=</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> which includes the logarithmic Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004742","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We establish curvature estimates for anisotropic Gauss curvature flows. By using this, we show that given a measure μ with a positive smooth density f, any solution to the Minkowski problem in with is a hypersurface of class . This is a sharp result because for each there exists a convex hypersurface of class which is a solution to the Minkowski problem for a positive smooth density f. In particular, the regularity is optimal in the case which includes the logarithmic Minkowski problem in .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.