{"title":"Curvature bound for Lp Minkowski problem","authors":"Kyeongsu Choi , Minhyun Kim , Taehun Lee","doi":"10.1016/j.aim.2024.109959","DOIUrl":null,"url":null,"abstract":"<div><div>We establish curvature estimates for anisotropic Gauss curvature flows. By using this, we show that given a measure <em>μ</em> with a positive smooth density <em>f</em>, any solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>p</mi><mo>≤</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> is a hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span>. This is a sharp result because for each <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> there exists a convex hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>+</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> which is a solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem for a positive smooth density <em>f</em>. In particular, the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> regularity is optimal in the case <span><math><mi>p</mi><mo>=</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> which includes the logarithmic Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109959"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004742","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish curvature estimates for anisotropic Gauss curvature flows. By using this, we show that given a measure μ with a positive smooth density f, any solution to the Minkowski problem in with is a hypersurface of class . This is a sharp result because for each there exists a convex hypersurface of class which is a solution to the Minkowski problem for a positive smooth density f. In particular, the regularity is optimal in the case which includes the logarithmic Minkowski problem in .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.