I. Nijem , R. Elliott , J. Brumm , L. Liu , K. Xu , R. Melendez , R. Hendricks , B. Wang , P. Siguenza
{"title":"Cross validation of pharmacokinetic bioanalytical methods: Experimental and statistical design","authors":"I. Nijem , R. Elliott , J. Brumm , L. Liu , K. Xu , R. Melendez , R. Hendricks , B. Wang , P. Siguenza","doi":"10.1016/j.jpba.2024.116485","DOIUrl":null,"url":null,"abstract":"<div><div>Pharmacokinetic (PK) analysis is an integral part of drug development. Health agency guidance provides development and validation recommendations for PK bioanalytical methods run in one laboratory. However, as a drug development program progresses, a PK bioanalytical method may need to be run in more than one laboratory. Additionally, a PK bioanalytical method format may change and a new method platform may be validated and implemented during the drug development cycle. Here we describe the cross validation strategy for comparisons of two validated bioanalytical methods used to generate PK data within the same study or across different studies. Current guidance for cross validations is limited and, therefore, Genentech, Inc. has developed a cross validation experimental strategy that utilizes incurred samples along with a comprehensive statistical analysis. One hundred incurred study samples over the applicable range of concentrations are selected based on four quartiles (Q) of in-study concentration levels. The samples are assayed once in the two bioanalytical methods. Bioanalytical method equivalency is assessed for the 100 samples based on pre-specified acceptability criterion: the two methods are considered equivalent if the percent differences in the lower and upper bound limits of the 90 % confidence interval (CI) are both within ±30 %. Quartile by concentration analysis using the same criterion may also need to be performed. A Bland-Altman plot of the percent difference of sample concentrations versus the mean concentration of each sample is also created to help further characterize the data. This strategy is a robust assessment of PK bioanalytical method equivalency and includes subgroup analyses by concentration to assess for biases. This strategy was implemented in two case studies: 1) two different laboratories using the same bioanalytical method and 2) a bioanalytical method platform change from enzyme-linked immunosorbent assay (ELISA) to multiplexing immunoaffinity (IA) liquid chromatography tandem mass spectrometry (IA LC-MS/MS).</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708524005272","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmacokinetic (PK) analysis is an integral part of drug development. Health agency guidance provides development and validation recommendations for PK bioanalytical methods run in one laboratory. However, as a drug development program progresses, a PK bioanalytical method may need to be run in more than one laboratory. Additionally, a PK bioanalytical method format may change and a new method platform may be validated and implemented during the drug development cycle. Here we describe the cross validation strategy for comparisons of two validated bioanalytical methods used to generate PK data within the same study or across different studies. Current guidance for cross validations is limited and, therefore, Genentech, Inc. has developed a cross validation experimental strategy that utilizes incurred samples along with a comprehensive statistical analysis. One hundred incurred study samples over the applicable range of concentrations are selected based on four quartiles (Q) of in-study concentration levels. The samples are assayed once in the two bioanalytical methods. Bioanalytical method equivalency is assessed for the 100 samples based on pre-specified acceptability criterion: the two methods are considered equivalent if the percent differences in the lower and upper bound limits of the 90 % confidence interval (CI) are both within ±30 %. Quartile by concentration analysis using the same criterion may also need to be performed. A Bland-Altman plot of the percent difference of sample concentrations versus the mean concentration of each sample is also created to help further characterize the data. This strategy is a robust assessment of PK bioanalytical method equivalency and includes subgroup analyses by concentration to assess for biases. This strategy was implemented in two case studies: 1) two different laboratories using the same bioanalytical method and 2) a bioanalytical method platform change from enzyme-linked immunosorbent assay (ELISA) to multiplexing immunoaffinity (IA) liquid chromatography tandem mass spectrometry (IA LC-MS/MS).
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.