{"title":"Tailoring multi-type nanoprecipitates in high-entropy alloys towards superior tensile properties at cryogenic temperatures","authors":"Shuang Qin , Zihan Zhang , Zheng Yu , Longhui Zhang , Fuping Yuan , Xiaohu Yao","doi":"10.1016/j.ijplas.2024.104132","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the quasi-static tensile properties in the face-centered cubic-based Al<sub>0.5</sub>Cr<sub>0.9</sub>FeNi<sub>2.5</sub>V<sub>0.2</sub> HEAs containing two types of heterogeneous nanoprecipitates, i.e., dual-lamellar and spherical nanoprecipitates, at ambient (293 K) and liquid nitrogen (77 K) temperatures are thoroughly investigated. The microstructure formed by aging at 873 K comprises L1<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and body-centered cubic dual-lamellar (DL) nanoprecipitates. In contrast, aging at 773 K results in solely spherical L1<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> nanoparticles. Both nanoprecipitates enhance mechanical strength as temperatures drop to 77 K; however, the DL nanoprecipitates additionally boost the work hardening rate, whereas the spherical nanoparticles notably improve ductility. To investigate the underlying deformation mechanisms, we perform interrupted mechanical tests and microstructure characterizations at various strains. The DL nanoprecipitates are observed to go through a multistage work hardening rate response by gradually introducing new boundaries to block dislocation motion, activating the stacking fault (SF) networks, and forming Lomer–Cottrell locks. A combination of interface hardening, dislocation hardening, SF-induced hardening, and precipitation hardening in DL samples leads to stronger hetero-deformation-induced hardening at cryogenic temperatures. In comparison, while samples with only spherical nanoparticles exhibit a monotonous decrease in the work-hardening rate, the spherical nanoparticles can be sheared by dislocations, effectively alleviating strain concentration and thereby enhancing ductility at cryogenic temperatures. Overall, this work provides practical design principles of nanoprecipitates for fine-tuning the balance of strength and ductility in FCC-based HEAs at cryogenic temperatures.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"182 ","pages":"Article 104132"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002596","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the quasi-static tensile properties in the face-centered cubic-based Al0.5Cr0.9FeNi2.5V0.2 HEAs containing two types of heterogeneous nanoprecipitates, i.e., dual-lamellar and spherical nanoprecipitates, at ambient (293 K) and liquid nitrogen (77 K) temperatures are thoroughly investigated. The microstructure formed by aging at 873 K comprises L1 and body-centered cubic dual-lamellar (DL) nanoprecipitates. In contrast, aging at 773 K results in solely spherical L1 nanoparticles. Both nanoprecipitates enhance mechanical strength as temperatures drop to 77 K; however, the DL nanoprecipitates additionally boost the work hardening rate, whereas the spherical nanoparticles notably improve ductility. To investigate the underlying deformation mechanisms, we perform interrupted mechanical tests and microstructure characterizations at various strains. The DL nanoprecipitates are observed to go through a multistage work hardening rate response by gradually introducing new boundaries to block dislocation motion, activating the stacking fault (SF) networks, and forming Lomer–Cottrell locks. A combination of interface hardening, dislocation hardening, SF-induced hardening, and precipitation hardening in DL samples leads to stronger hetero-deformation-induced hardening at cryogenic temperatures. In comparison, while samples with only spherical nanoparticles exhibit a monotonous decrease in the work-hardening rate, the spherical nanoparticles can be sheared by dislocations, effectively alleviating strain concentration and thereby enhancing ductility at cryogenic temperatures. Overall, this work provides practical design principles of nanoprecipitates for fine-tuning the balance of strength and ductility in FCC-based HEAs at cryogenic temperatures.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.