Benders decomposition for bi-objective linear programs

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Andrea Raith, Richard Lusby, Ali Akbar Sohrabi Yousefkhan
{"title":"Benders decomposition for bi-objective linear programs","authors":"Andrea Raith, Richard Lusby, Ali Akbar Sohrabi Yousefkhan","doi":"10.1016/j.ejor.2024.09.004","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a new decomposition technique for solving bi-objective linear programming problems. The proposed methodology combines the bi-objective simplex algorithm with Benders decomposition and can be used to obtain a complete set of efficient extreme solutions, and the corresponding set of extreme non-dominated points, for a bi-objective linear programme. Using a Benders-like reformulation, the decomposition approach decouples the problem into a bi-objective master problem and a bi-objective subproblem, each of which is solved using the bi-objective parametric simplex algorithm. The master problem provides candidate efficient solutions that the subproblem assesses for feasibility and optimality. As in standard Benders decomposition, optimality and feasibility cuts are generated by the subproblem and guide the master problem solve. This paper discusses bi-objective Benders decomposition from a theoretical perspective, proves the correctness of the proposed reformulation and addresses the need for so-called weighted optimality cuts. Furthermore, we present an algorithm to solve the reformulation and discuss its performance for three types of bi-objective optimisation problems.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2024.09.004","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a new decomposition technique for solving bi-objective linear programming problems. The proposed methodology combines the bi-objective simplex algorithm with Benders decomposition and can be used to obtain a complete set of efficient extreme solutions, and the corresponding set of extreme non-dominated points, for a bi-objective linear programme. Using a Benders-like reformulation, the decomposition approach decouples the problem into a bi-objective master problem and a bi-objective subproblem, each of which is solved using the bi-objective parametric simplex algorithm. The master problem provides candidate efficient solutions that the subproblem assesses for feasibility and optimality. As in standard Benders decomposition, optimality and feasibility cuts are generated by the subproblem and guide the master problem solve. This paper discusses bi-objective Benders decomposition from a theoretical perspective, proves the correctness of the proposed reformulation and addresses the need for so-called weighted optimality cuts. Furthermore, we present an algorithm to solve the reformulation and discuss its performance for three types of bi-objective optimisation problems.
双目标线性程序的本德斯分解
本文开发了一种新的分解技术,用于求解双目标线性规划问题。所提出的方法结合了双目标单纯形算法和 Benders 分解法,可用于获得双目标线性规划的一整套高效极值解以及相应的极值非支配点集合。利用类似于本德斯的重新表述,分解方法将问题分解为一个双目标主问题和一个双目标子问题,每个问题都使用双目标参数单纯形算法求解。主问题提供有效的候选解决方案,子问题评估其可行性和最优性。与标准本德斯分解法一样,子问题会生成最优性和可行性切分,并指导主问题的求解。本文从理论角度讨论了双目标本德斯分解法,证明了所建议的重构的正确性,并解决了所谓加权最优性切分的需求。此外,我们还提出了一种解决重构问题的算法,并讨论了该算法在三类双目标优化问题中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信