Low-temperature T2 resistivity in the underdoped pseudogap phase versus T-linear resistivity in the overdoped strange-metal phase of cuprate superconductors

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Xingyu Ma, Minghuan Zeng, Huaiming Guo, Shiping Feng
{"title":"Low-temperature T2 resistivity in the underdoped pseudogap phase versus T-linear resistivity in the overdoped strange-metal phase of cuprate superconductors","authors":"Xingyu Ma, Minghuan Zeng, Huaiming Guo, Shiping Feng","doi":"10.1103/physrevb.110.094520","DOIUrl":null,"url":null,"abstract":"The transport experiments demonstrate a dramatic switch from the low-temperature linear in temperature (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>-linear) resistivity in the overdoped strange-metal phase of cuprate superconductors to the low-temperature quadratic in temperature (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>-quadratic) resistivity in the underdoped pseudogap phase; however, a consensus on the origin of this unusual switch is still lacking. Here the resistivity in the underdoped pseudogap phase of cuprate superconductors is investigated using the Boltzmann transport equation. The resistivity originates from the electron umklapp scattering mediated by the spin excitation; however, the dominant contribution mainly comes from <i>the antinodal umklapp scattering</i>. In particular, a <i>low-temperature</i> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>scale</mi></msub></math> scales with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi mathvariant=\"normal\">Δ</mi><mi>p</mi><mn>2</mn></msubsup></math> in the underdoped regime due to the opening of a momentum-dependent spin pseudogap, where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Δ</mi><mi>p</mi></msub></math> is the minimal umklapp vector at the antinode. Moreover, this <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>scale</mi></msub></math> decreases with the increase of doping in the underdoped regime, and then is reduced to a <i>very low temperature</i> in the overdoped regime. In the underdoped regime, the resistivity is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>-quadratic at the low temperatures below <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>scale</mi></msub></math>, where the strength of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>-quadratic resistivity weakens as the doping is raised. However, in the overdoped regime, the resistivity is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>-linear at the low temperatures above <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>scale</mi></msub></math>. The results in this paper together with the recent study on the resistivity in the overdoped regime therefore show that the electron umklapp scattering from a spin excitation responsible for the low-temperature <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>-linear resistivity in the overdoped regime naturally produces the low-temperature <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>-quadratic resistivity in the underdoped regime resulting from the opening of a momentum-dependent spin pseudogap.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.094520","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The transport experiments demonstrate a dramatic switch from the low-temperature linear in temperature (T-linear) resistivity in the overdoped strange-metal phase of cuprate superconductors to the low-temperature quadratic in temperature (T-quadratic) resistivity in the underdoped pseudogap phase; however, a consensus on the origin of this unusual switch is still lacking. Here the resistivity in the underdoped pseudogap phase of cuprate superconductors is investigated using the Boltzmann transport equation. The resistivity originates from the electron umklapp scattering mediated by the spin excitation; however, the dominant contribution mainly comes from the antinodal umklapp scattering. In particular, a low-temperature Tscale scales with Δp2 in the underdoped regime due to the opening of a momentum-dependent spin pseudogap, where Δp is the minimal umklapp vector at the antinode. Moreover, this Tscale decreases with the increase of doping in the underdoped regime, and then is reduced to a very low temperature in the overdoped regime. In the underdoped regime, the resistivity is T-quadratic at the low temperatures below Tscale, where the strength of the T-quadratic resistivity weakens as the doping is raised. However, in the overdoped regime, the resistivity is T-linear at the low temperatures above Tscale. The results in this paper together with the recent study on the resistivity in the overdoped regime therefore show that the electron umklapp scattering from a spin excitation responsible for the low-temperature T-linear resistivity in the overdoped regime naturally produces the low-temperature T-quadratic resistivity in the underdoped regime resulting from the opening of a momentum-dependent spin pseudogap.

Abstract Image

铜氧化物超导体掺杂不足的伪间隙相的低温 T2 电阻率与掺杂过度的奇异金属相的 T 线性电阻率比较
输运实验证明,从铜氧化物超导体过掺杂奇异金属相中的低温线性电阻率(T-线性)到欠掺杂伪间隙相中的低温二次电阻率(T-二次)发生了戏剧性的转换;然而,人们对这种不寻常转换的起源仍缺乏共识。本文利用玻尔兹曼输运方程研究了铜氧化物超导体掺杂不足的伪间隙相中的电阻率。电阻率源于自旋激发介导的电子umklapp散射;然而,其主要贡献来自反正极umklapp散射。特别是,在掺杂不足的情况下,由于与动量相关的自旋伪缺口的打开,低温 Tscale 与 Δp2 成比例关系,其中 Δp 是反节点处的最小 umklapp 向量。此外,在欠掺杂体系中,随着掺杂量的增加,该 Tscale 会减小,然后在过掺杂体系中减小到非常低的温度。在掺杂不足体系中,电阻率在低于 Tscale 的低温下为 T 二次方电阻率,T 二次方电阻率的强度随着掺杂量的增加而减弱。然而,在过掺杂情况下,电阻率在高于 Tscale 的低温下呈 T-线性。因此,本文的研究结果与最近关于过掺杂体系电阻率的研究结果表明,在过掺杂体系中,自旋激发产生的电子umklapp散射导致低温T线性电阻率,而在欠掺杂体系中,自旋激发产生的电子umklapp散射自然会产生低温T二次方电阻率,这是因为与动量有关的自旋伪间隙打开了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信