Leveraging Input-Level Feature Deformation With Guided-Attention for Sulcal Labeling

Seungeun Lee;Seunghwan Lee;Ethan H. Willbrand;Benjamin J. Parker;Silvia A. Bunge;Kevin S. Weiner;Ilwoo Lyu
{"title":"Leveraging Input-Level Feature Deformation With Guided-Attention for Sulcal Labeling","authors":"Seungeun Lee;Seunghwan Lee;Ethan H. Willbrand;Benjamin J. Parker;Silvia A. Bunge;Kevin S. Weiner;Ilwoo Lyu","doi":"10.1109/TMI.2024.3468727","DOIUrl":null,"url":null,"abstract":"The identification of cortical sulci is key for understanding functional and structural development of the cortex. While large, consistent sulci (or primary/secondary sulci) receive significant attention in most studies, the exploration of smaller and more variable sulci (or putative tertiary sulci) remains relatively under-investigated. Despite its importance, automatic labeling of cortical sulci is challenging due to (1) the presence of substantial anatomical variability, (2) the relatively small size of the regions of interest (ROIs) compared to unlabeled regions, and (3) the scarcity of annotated labels. In this paper, we propose a novel end-to-end learning framework using a spherical convolutional neural network (CNN). Specifically, the proposed method learns to effectively warp geometric features in a direction that facilitates the labeling of sulci while mitigating the impact of anatomical variability. Moreover, we introduce a guided-attention mechanism that takes into account the extent of deformation induced by the learned warping. This extracts discriminative features that emphasize sulcal ROIs, while suppressing irrelevant information of unlabeled regions. In the experiments, we evaluate the proposed method on 8 sulci of the posterior medial cortex. Our method outperforms existing methods particularly in the putative tertiary sulci. The code is publicly available at <uri>https://github.com/Shape-Lab/DSPHARM-Net</uri>.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"915-926"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10695448/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of cortical sulci is key for understanding functional and structural development of the cortex. While large, consistent sulci (or primary/secondary sulci) receive significant attention in most studies, the exploration of smaller and more variable sulci (or putative tertiary sulci) remains relatively under-investigated. Despite its importance, automatic labeling of cortical sulci is challenging due to (1) the presence of substantial anatomical variability, (2) the relatively small size of the regions of interest (ROIs) compared to unlabeled regions, and (3) the scarcity of annotated labels. In this paper, we propose a novel end-to-end learning framework using a spherical convolutional neural network (CNN). Specifically, the proposed method learns to effectively warp geometric features in a direction that facilitates the labeling of sulci while mitigating the impact of anatomical variability. Moreover, we introduce a guided-attention mechanism that takes into account the extent of deformation induced by the learned warping. This extracts discriminative features that emphasize sulcal ROIs, while suppressing irrelevant information of unlabeled regions. In the experiments, we evaluate the proposed method on 8 sulci of the posterior medial cortex. Our method outperforms existing methods particularly in the putative tertiary sulci. The code is publicly available at https://github.com/Shape-Lab/DSPHARM-Net.
利用输入级特征变形和引导式注意力进行胼胝体标记
皮层脑沟的识别是理解皮层功能和结构发育的关键。虽然大型的、一致的沟(或原发性/继发性沟)在大多数研究中得到了显著的关注,但对较小的、更可变的沟(或假定的三级沟)的探索仍然相对缺乏研究。尽管皮质沟的自动标记很重要,但由于(1)存在大量的解剖变异,(2)与未标记区域相比,感兴趣区域(roi)的大小相对较小,以及(3)注释标签的稀缺性,因此皮质沟的自动标记具有挑战性。在本文中,我们提出了一种使用球面卷积神经网络(CNN)的新颖的端到端学习框架。具体而言,该方法学习有效地扭曲几何特征,使其有利于沟的标记,同时减轻解剖变异的影响。此外,我们引入了一种引导注意机制,该机制考虑了由学习翘曲引起的变形程度。这提取了强调区域roi的判别特征,同时抑制了未标记区域的无关信息。在实验中,我们对后内侧皮质的8个沟进行了评价。我们的方法优于现有的方法,特别是在假定的第三沟。该代码可在https://github.com/Shape-Lab/DSPHARM-Net上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信