LEOEdge: A Satellite-Ground Cooperation Platform for the AI Inference in Large LEO Constellation

Su Yao;Yiying Lin;Mu Wang;Ke Xu;Mingwei Xu;Changqiao Xu;Hongke Zhang
{"title":"LEOEdge: A Satellite-Ground Cooperation Platform for the AI Inference in Large LEO Constellation","authors":"Su Yao;Yiying Lin;Mu Wang;Ke Xu;Mingwei Xu;Changqiao Xu;Hongke Zhang","doi":"10.1109/JSAC.2024.3460083","DOIUrl":null,"url":null,"abstract":"With the rapid growth of low earth orbit (LEO) satellites, enabling LEO AI inference becomes a fast-increasing trend. However, due to resource heterogeneity, scheduling complexity, and fast movement, how to decide the place of executing each AI inference task is nontrivial in LEO systems. In this paper, we propose LEOEdge, an edge-assisted AI inference system for LEO satellites. We first introduce the adaptive modeling technologies that automatically generate the model for each satellite according to its computation resources. We then propose a layered scheduling optimization scheme to schedule the AI inference task in a distributed manner. LEOEdge also designs a seamless data transmission scheme to avoid transmission failure due to the LEO satellite movement. We conduct a series of simulation tests to validate the performance of the proposed LEOEdge, in terms of the neural network searching efficiency, average time execution latency, and delivery latency.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 1","pages":"36-50"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10694785/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid growth of low earth orbit (LEO) satellites, enabling LEO AI inference becomes a fast-increasing trend. However, due to resource heterogeneity, scheduling complexity, and fast movement, how to decide the place of executing each AI inference task is nontrivial in LEO systems. In this paper, we propose LEOEdge, an edge-assisted AI inference system for LEO satellites. We first introduce the adaptive modeling technologies that automatically generate the model for each satellite according to its computation resources. We then propose a layered scheduling optimization scheme to schedule the AI inference task in a distributed manner. LEOEdge also designs a seamless data transmission scheme to avoid transmission failure due to the LEO satellite movement. We conduct a series of simulation tests to validate the performance of the proposed LEOEdge, in terms of the neural network searching efficiency, average time execution latency, and delivery latency.
LEOEdge:大型低地轨道星座人工智能推理的星地合作平台
随着近地轨道(LEO)卫星数量的快速增长,实现近地轨道人工智能推理成为一种快速增长的趋势。然而,在LEO系统中,由于资源异构性、调度复杂性和快速移动,如何确定每个AI推理任务的执行位置是一个非常重要的问题。本文提出了一种边缘辅助的低轨道卫星人工智能推理系统LEOEdge。首先介绍了自适应建模技术,该技术可以根据每颗卫星的计算资源自动生成模型。然后,我们提出了一种分层调度优化方案,以分布式方式调度人工智能推理任务。LEOEdge还设计了无缝数据传输方案,以避免由于LEO卫星移动而导致传输失败。我们进行了一系列的仿真测试,以验证所提出的LEOEdge在神经网络搜索效率、平均时间执行延迟和传递延迟方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信