PTEN controls alternative splicing of autism spectrum disorder-associated transcripts in primary neurons.

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY
Brain Pub Date : 2024-09-26 DOI:10.1093/brain/awae306
Sebastian Rademacher,Marco Preußner,Marie C Rehm,Joachim Fuchs,Florian Heyd,Britta J Eickholt
{"title":"PTEN controls alternative splicing of autism spectrum disorder-associated transcripts in primary neurons.","authors":"Sebastian Rademacher,Marco Preußner,Marie C Rehm,Joachim Fuchs,Florian Heyd,Britta J Eickholt","doi":"10.1093/brain/awae306","DOIUrl":null,"url":null,"abstract":"Phosphatase and tensin homologue (PTEN) is the main antagonist of the phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signalling pathway and mutated in 10-20% of individuals with autism spectrum disorder (ASD) exhibiting macrocephaly. Hyperactive mTOR signalling is responsible for some aspects during PTEN-ASD progression, e.g. neuronal hypertrophy and -excitability, but PI3K/mTOR-independent processes have additionally been described. There is emerging evidence that PTEN regulates gene transcription, spliceosome formation and pre-mRNA splicing independently of PI3K/mTOR. Altered splicing is a hallmark of brains from individuals with idiopathic and PTEN-ASD, however, molecular mechanisms are yet to be identified. We performed RNA-Seq followed by analysis of altered transcript splicing in Pten-deficient primary cortical mouse neurons, which we compared with published data from PTEN-deficient human neuronal stem cells. This analysis identified that transcripts were globally mis-spliced in a developmentally regulated fashion and cluster in synaptic and gene expression regulatory processes. Strikingly, splicing defects following Pten-deficiency represent a significant number of other known ASD-susceptibility genes. Furthermore, we show that exons with strong 3' splice sites are more frequently mis-spliced under Pten-deficient conditions. Our study indicates that PTEN-ASD is a multifactorial condition involving the dysregulation of other known ASD-susceptibility genes.","PeriodicalId":9063,"journal":{"name":"Brain","volume":"30 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae306","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphatase and tensin homologue (PTEN) is the main antagonist of the phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signalling pathway and mutated in 10-20% of individuals with autism spectrum disorder (ASD) exhibiting macrocephaly. Hyperactive mTOR signalling is responsible for some aspects during PTEN-ASD progression, e.g. neuronal hypertrophy and -excitability, but PI3K/mTOR-independent processes have additionally been described. There is emerging evidence that PTEN regulates gene transcription, spliceosome formation and pre-mRNA splicing independently of PI3K/mTOR. Altered splicing is a hallmark of brains from individuals with idiopathic and PTEN-ASD, however, molecular mechanisms are yet to be identified. We performed RNA-Seq followed by analysis of altered transcript splicing in Pten-deficient primary cortical mouse neurons, which we compared with published data from PTEN-deficient human neuronal stem cells. This analysis identified that transcripts were globally mis-spliced in a developmentally regulated fashion and cluster in synaptic and gene expression regulatory processes. Strikingly, splicing defects following Pten-deficiency represent a significant number of other known ASD-susceptibility genes. Furthermore, we show that exons with strong 3' splice sites are more frequently mis-spliced under Pten-deficient conditions. Our study indicates that PTEN-ASD is a multifactorial condition involving the dysregulation of other known ASD-susceptibility genes.
PTEN 控制原发性神经元中自闭症谱系障碍相关转录本的替代剪接。
磷脂酶和天丝同源物(PTEN)是磷脂酰肌醇-3-激酶(PI3K)/AKT/mTOR 信号通路的主要拮抗剂,10%-20% 的自闭症谱系障碍(ASD)患者会出现巨头畸形。在 PTEN-ASD 的发展过程中,过度活跃的 mTOR 信号在某些方面起了作用,如神经元肥大和兴奋性,但也有人描述了与 PI3K/mTOR 无关的过程。有新证据表明,PTEN 可独立于 PI3K/mTOR 调节基因转录、剪接体形成和前 mRNA 剪接。剪接改变是特发性和PTEN-ASD患者大脑的一个特征,但其分子机制尚未确定。我们进行了RNA-Seq分析,然后分析了Pten缺陷小鼠原发性皮质神经元中改变的转录本剪接,并将其与已发表的PTEN缺陷人类神经元干细胞的数据进行了比较。这项分析发现,转录本以发育调控的方式发生了全局性的错误剪接,并聚集在突触和基因表达调控过程中。令人震惊的是,Pten 缺失后的剪接缺陷代表了大量其他已知的 ASD 易感基因。此外,我们还发现,在Pten缺陷条件下,具有强3'剪接位点的外显子更容易被错误剪接。我们的研究表明,PTEN-ASD 是一种多因素疾病,涉及其他已知的 ASD 易感基因的失调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信