Z. Chahine, S. Abel, T. Hollin, G. L. Barnes, J. H. Chung, M. E. Daub, I. Renard, J. Y. Choi, P. Vydyam, A. Pal, M. Alba-Argomaniz, C. A. S. Banks, J. Kirkwood, A. Saraf, I. Camino, P. Castaneda, M. C. Cuevas, J. De Mercado-Arnanz, E. Fernandez-Alvaro, A. Garcia-Perez, N. Ibarz, S. Viera-Morilla, J. Prudhomme, C. J. Joyner, A. K. Bei, L. Florens, C. Ben Mamoun, C. D. Vanderwal, K. G. Le Roch
{"title":"A kalihinol analog disrupts apicoplast function and vesicular trafficking in P. falciparum malaria","authors":"Z. Chahine, S. Abel, T. Hollin, G. L. Barnes, J. H. Chung, M. E. Daub, I. Renard, J. Y. Choi, P. Vydyam, A. Pal, M. Alba-Argomaniz, C. A. S. Banks, J. Kirkwood, A. Saraf, I. Camino, P. Castaneda, M. C. Cuevas, J. De Mercado-Arnanz, E. Fernandez-Alvaro, A. Garcia-Perez, N. Ibarz, S. Viera-Morilla, J. Prudhomme, C. J. Joyner, A. K. Bei, L. Florens, C. Ben Mamoun, C. D. Vanderwal, K. G. Le Roch","doi":"10.1126/science.adm7966","DOIUrl":null,"url":null,"abstract":"<div >We report the discovery of MED6-189, an analog of the kalihinol family of isocyanoterpene natural products that is effective against drug-sensitive and drug-resistant <i>Plasmodium falciparum</i> strains, blocking both asexual replication and sexual differentiation. In vivo studies using a humanized mouse model of malaria confirm strong efficacy of the compound in animals with no apparent hemolytic activity or toxicity. Complementary chemical, molecular, and genomics analyses revealed that MED6-189 targets the parasite apicoplast and acts by inhibiting lipid biogenesis and cellular trafficking. Genetic analyses revealed that a mutation in <i>PfSec13</i>, which encodes a component of the parasite secretory machinery, reduced susceptibility to the drug. Its high potency, excellent therapeutic profile, and distinctive mode of action make MED6-189 an excellent addition to the antimalarial drug pipeline.</div>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adm7966","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report the discovery of MED6-189, an analog of the kalihinol family of isocyanoterpene natural products that is effective against drug-sensitive and drug-resistant Plasmodium falciparum strains, blocking both asexual replication and sexual differentiation. In vivo studies using a humanized mouse model of malaria confirm strong efficacy of the compound in animals with no apparent hemolytic activity or toxicity. Complementary chemical, molecular, and genomics analyses revealed that MED6-189 targets the parasite apicoplast and acts by inhibiting lipid biogenesis and cellular trafficking. Genetic analyses revealed that a mutation in PfSec13, which encodes a component of the parasite secretory machinery, reduced susceptibility to the drug. Its high potency, excellent therapeutic profile, and distinctive mode of action make MED6-189 an excellent addition to the antimalarial drug pipeline.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.