Mengjiao Lin , Dedong Wang , Yanlan Chen , Gewenhan Chen , Yanni Zhou , Juanjuan Ou , Liangxiang Xiao
{"title":"PRR promotes hypertensive renal injury by activating Wnt/β-catenin signaling and inflammation infiltration in mice","authors":"Mengjiao Lin , Dedong Wang , Yanlan Chen , Gewenhan Chen , Yanni Zhou , Juanjuan Ou , Liangxiang Xiao","doi":"10.1016/j.bbadis.2024.167517","DOIUrl":null,"url":null,"abstract":"<div><div>Hypertension stands out as a substantial independent risk factor in the progression of chronic kidney disease; however, the exact pathological mechanisms remain elusive. Our preliminary studies find that Wnt/β-catenin control renin-angiotensin system (RAS) expression, thus playing an important role in the pathogenesis of hypertension and renal fibrosis. As an integral component of the RAS, the (pro)renin receptor (PRR) plays a crucial role in the activation of the RAS and hypertension. Recent studies suggest a reciprocal relationship between PRR and Wnt/β-catenin signaling, potentially contributing to hypertensive renal fibrosis development. To assess the role of PRR in mediating hypertensive nephropathy, we manipulated this signaling by over expression of PRR ligand or blockade of PRR by siPRR. In vivo, PRR induction promoted hypertension, proteinuria, renal fibrosis, inflammatory response and β-catenin activation in Ang II induced hypertension mice. Conversely, blockade of PRR inhibited Ang II mediated hypertension, renal fibrosis and inflammation. In vitro, PRR over expression renal tubular cells exacerbated the Ang II induced fibrotic response and inflammation. Moreover, PRR was upregulated in hypertensive nephropathy patients, and correlated with renal function and renal fibrosis. These results indicate that PRR interact with Wnt/β-catenin signaling promote the progression of hypertensive nephropathy. PRR could be served as a biomarker for the diagnosis and treatment of hypertensive renal fibrosis.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 1","pages":"Article 167517"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443924005118","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypertension stands out as a substantial independent risk factor in the progression of chronic kidney disease; however, the exact pathological mechanisms remain elusive. Our preliminary studies find that Wnt/β-catenin control renin-angiotensin system (RAS) expression, thus playing an important role in the pathogenesis of hypertension and renal fibrosis. As an integral component of the RAS, the (pro)renin receptor (PRR) plays a crucial role in the activation of the RAS and hypertension. Recent studies suggest a reciprocal relationship between PRR and Wnt/β-catenin signaling, potentially contributing to hypertensive renal fibrosis development. To assess the role of PRR in mediating hypertensive nephropathy, we manipulated this signaling by over expression of PRR ligand or blockade of PRR by siPRR. In vivo, PRR induction promoted hypertension, proteinuria, renal fibrosis, inflammatory response and β-catenin activation in Ang II induced hypertension mice. Conversely, blockade of PRR inhibited Ang II mediated hypertension, renal fibrosis and inflammation. In vitro, PRR over expression renal tubular cells exacerbated the Ang II induced fibrotic response and inflammation. Moreover, PRR was upregulated in hypertensive nephropathy patients, and correlated with renal function and renal fibrosis. These results indicate that PRR interact with Wnt/β-catenin signaling promote the progression of hypertensive nephropathy. PRR could be served as a biomarker for the diagnosis and treatment of hypertensive renal fibrosis.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.