A Blaschke–Petkantschin formula for linear and affine subspaces with application to intersection probabilities

IF 1.3 2区 数学 Q1 MATHEMATICS
Emil Dare , Markus Kiderlen , Christoph Thäle
{"title":"A Blaschke–Petkantschin formula for linear and affine subspaces with application to intersection probabilities","authors":"Emil Dare ,&nbsp;Markus Kiderlen ,&nbsp;Christoph Thäle","doi":"10.1016/j.na.2024.113672","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a uniformly distributed random linear subspace <span><math><mi>L</mi></math></span> and a stochastically independent random affine subspace <span><math><mi>E</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, both of fixed dimension. For a natural class of distributions for <span><math><mi>E</mi></math></span> we show that the intersection <span><math><mrow><mi>L</mi><mo>∩</mo><mi>E</mi></mrow></math></span> admits a density with respect to the invariant measure. This density depends only on the distance <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>o</mi><mo>,</mo><mi>E</mi><mo>∩</mo><mi>L</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mrow><mi>L</mi><mo>∩</mo><mi>E</mi></mrow></math></span> to the origin and is derived explicitly. It can be written as the product of a power of <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>o</mi><mo>,</mo><mi>E</mi><mo>∩</mo><mi>L</mi><mo>)</mo></mrow></mrow></math></span> and a part involving an incomplete beta integral. Choosing <span><math><mi>E</mi></math></span> uniformly among all affine subspaces of fixed dimension hitting the unit ball, we derive an explicit density for the random variable <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>o</mi><mo>,</mo><mi>E</mi><mo>∩</mo><mi>L</mi><mo>)</mo></mrow></mrow></math></span> and study the behavior of the probability that <span><math><mrow><mi>E</mi><mo>∩</mo><mi>L</mi></mrow></math></span> hits the unit ball in high dimensions. Lastly, we show that our result can be extended to the setting where <span><math><mi>E</mi></math></span> is tangent to the unit sphere, in which case we again derive the density for <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>o</mi><mo>,</mo><mi>E</mi><mo>∩</mo><mi>L</mi><mo>)</mo></mrow></mrow></math></span>. Our probabilistic results are derived by means of a new integral–geometric transformation formula of Blaschke–Petkantschin type.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"250 ","pages":"Article 113672"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001913","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a uniformly distributed random linear subspace L and a stochastically independent random affine subspace E in Rn, both of fixed dimension. For a natural class of distributions for E we show that the intersection LE admits a density with respect to the invariant measure. This density depends only on the distance d(o,EL) of LE to the origin and is derived explicitly. It can be written as the product of a power of d(o,EL) and a part involving an incomplete beta integral. Choosing E uniformly among all affine subspaces of fixed dimension hitting the unit ball, we derive an explicit density for the random variable d(o,EL) and study the behavior of the probability that EL hits the unit ball in high dimensions. Lastly, we show that our result can be extended to the setting where E is tangent to the unit sphere, in which case we again derive the density for d(o,EL). Our probabilistic results are derived by means of a new integral–geometric transformation formula of Blaschke–Petkantschin type.
线性和仿射子空间的布拉什克-佩特康钦公式及其在交集概率中的应用
考虑 Rn 中的均匀分布随机线性子空间 L 和随机独立随机仿射子空间 E,两者的维数都是固定的。对于 E 的一类自然分布,我们证明 L∩E 的交集有一个关于不变度量的密度。这个密度只取决于 L∩E 到原点的距离 d(o,E∩L),并且是明确推导出来的。它可以写成 d(o,E∩L)的幂与不完全贝塔积分的乘积。我们在所有固定维度的仿射子空间中均匀地选择 E,得出了随机变量 d(o,E∩L)的显式密度,并研究了 E∩L 在高维度上击中单位球的概率行为。最后,我们证明我们的结果可以扩展到 E 与单位球相切的情况,在这种情况下,我们再次推导出 d(o,E∩L) 的密度。我们的概率结果是通过布拉什克-佩特康钦类型的新积分几何变换公式得出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信