Mudassar Abbas , Francesco Giannino , Annalisa Iuorio , Zubair Ahmad , Francesco Calabró
{"title":"PDE models for vegetation biomass and autotoxicity","authors":"Mudassar Abbas , Francesco Giannino , Annalisa Iuorio , Zubair Ahmad , Francesco Calabró","doi":"10.1016/j.matcom.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>Numerical techniques are widely used to simulate population dynamics in space. In vegetation dynamics, these techniques are very useful to investigate how plants grow, compete for resources, and react to environmental factors within the ecosystem. Plant–soil feedback (PSF) refers to the process where plants or a community alter the biotic and abiotic characteristics of soil that affects the growth of plants or community subsequently growing in that soil. During the last three decades, PSF has been recognized as an important driver for the emergence of vegetation patterns. The importance of studying such vegetation patterns is that they provide an insight into potential ecological changes and illustrate the flexibility and resilience of an ecosystem. Despite the fact that water depletion was once thought to be a major factor in the development of vegetation patterns the existence of patterns in ecosystems without water limitations serves as evidence that this is not the case. In this study, we examine how negative plant–soil feedback contributes to the dynamics of plant biomass. We provide a comparison of different reaction–diffusion PDE models explaining the dynamics of plant biomass in the presence of autotoxicity produced by litter decomposition. We introduce different growth terms, including logistic and exponential, along with additional factors such as extra mortality and inhibitor terms, and develop six distinct models to investigate their individual and combined effects on biomass toxicity distribution. By applying appropriate numerical techniques, we solve the proposed reaction–diffusion PDE models in MATLAB to predict the impact of soil toxicity on plant biomass.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"228 ","pages":"Pages 386-401"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424002544","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical techniques are widely used to simulate population dynamics in space. In vegetation dynamics, these techniques are very useful to investigate how plants grow, compete for resources, and react to environmental factors within the ecosystem. Plant–soil feedback (PSF) refers to the process where plants or a community alter the biotic and abiotic characteristics of soil that affects the growth of plants or community subsequently growing in that soil. During the last three decades, PSF has been recognized as an important driver for the emergence of vegetation patterns. The importance of studying such vegetation patterns is that they provide an insight into potential ecological changes and illustrate the flexibility and resilience of an ecosystem. Despite the fact that water depletion was once thought to be a major factor in the development of vegetation patterns the existence of patterns in ecosystems without water limitations serves as evidence that this is not the case. In this study, we examine how negative plant–soil feedback contributes to the dynamics of plant biomass. We provide a comparison of different reaction–diffusion PDE models explaining the dynamics of plant biomass in the presence of autotoxicity produced by litter decomposition. We introduce different growth terms, including logistic and exponential, along with additional factors such as extra mortality and inhibitor terms, and develop six distinct models to investigate their individual and combined effects on biomass toxicity distribution. By applying appropriate numerical techniques, we solve the proposed reaction–diffusion PDE models in MATLAB to predict the impact of soil toxicity on plant biomass.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.