72. What's under VarCat's hat: Modeling variant oncogenicity classifications with GA4GH Standards

IF 1.4 4区 医学 Q4 GENETICS & HEREDITY
Kathryn Stahl, Wesley Goar, Kori Kuzma, Alex Wagner
{"title":"72. What's under VarCat's hat: Modeling variant oncogenicity classifications with GA4GH Standards","authors":"Kathryn Stahl,&nbsp;Wesley Goar,&nbsp;Kori Kuzma,&nbsp;Alex Wagner","doi":"10.1016/j.cancergen.2024.08.074","DOIUrl":null,"url":null,"abstract":"<div><div>The Variation Categorizer (VarCat) is a tool for classifying variant oncogenicity for variant-disease pairings in a clinical laboratory workflow. VarCat implements the ClinGen/CGC/VICC oncogenicity guidelines to assist in the classification of a variant's capability for driving cancer formation and growth. VarCat provides an intuitive interface for structured data sharing and produces classification assessments compliant with genomic knowledge standards specified by the Global Alliance for Genomics and Health (GA4GH).</div><div>Here, we present the models, structures, and capabilities provided by VarCat's API and demonstrate its ability to create standardized assessments. VarCat leverages harmonized data from several genomic knowledge sources collated by the VICC MetaKB service. VarCat ensures comprehensive analysis by incorporating standardized gene, variant, therapeutic, disease, and evidence data, and it is driving the development of GA4GH genomic knowledge formats for oncogenicity data. We also describe the suite of normalization microservices used by MetaKB and VarCat to harmonize genomic knowledge concepts. We illustrate how VarCat reduces barriers to interoperable variant-associated evidence through the adoption of the GA4GH Variation Representation Specification (VRS). We also present standardized evidence data using the AMP/ASCO/CAP guidelines for clinical actionability. Overall, our work illustrates how GA4GH Genomic Knowledge Standards drive data interoperability and successful knowledge exchange, ultimately enhancing genetic disease comprehension and advancing patient care.</div></div>","PeriodicalId":49225,"journal":{"name":"Cancer Genetics","volume":"286 ","pages":"Page S23"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210776224001121","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The Variation Categorizer (VarCat) is a tool for classifying variant oncogenicity for variant-disease pairings in a clinical laboratory workflow. VarCat implements the ClinGen/CGC/VICC oncogenicity guidelines to assist in the classification of a variant's capability for driving cancer formation and growth. VarCat provides an intuitive interface for structured data sharing and produces classification assessments compliant with genomic knowledge standards specified by the Global Alliance for Genomics and Health (GA4GH).
Here, we present the models, structures, and capabilities provided by VarCat's API and demonstrate its ability to create standardized assessments. VarCat leverages harmonized data from several genomic knowledge sources collated by the VICC MetaKB service. VarCat ensures comprehensive analysis by incorporating standardized gene, variant, therapeutic, disease, and evidence data, and it is driving the development of GA4GH genomic knowledge formats for oncogenicity data. We also describe the suite of normalization microservices used by MetaKB and VarCat to harmonize genomic knowledge concepts. We illustrate how VarCat reduces barriers to interoperable variant-associated evidence through the adoption of the GA4GH Variation Representation Specification (VRS). We also present standardized evidence data using the AMP/ASCO/CAP guidelines for clinical actionability. Overall, our work illustrates how GA4GH Genomic Knowledge Standards drive data interoperability and successful knowledge exchange, ultimately enhancing genetic disease comprehension and advancing patient care.
72.VarCat 帽下有什么?利用 GA4GH 标准建立变体致癌性分类模型
变异分类器(VarCat)是一种在临床实验室工作流程中对变异-疾病配对进行变异致癌性分类的工具。VarCat 执行 ClinGen/CGC/VICC 致癌性指南,以协助对变异推动癌症形成和生长的能力进行分类。VarCat为结构化数据共享提供了直观的界面,并根据全球基因组学与健康联盟(GA4GH)规定的基因组知识标准进行分类评估。在此,我们介绍了VarCat应用程序接口提供的模型、结构和功能,并展示了其创建标准化评估的能力。VarCat利用VICC MetaKB服务整理的多个基因组知识源的统一数据。VarCat 通过整合标准化的基因、变异体、治疗、疾病和证据数据来确保全面的分析,并推动了 GA4GH 致癌性数据基因组知识格式的开发。我们还介绍了 MetaKB 和 VarCat 用于统一基因组知识概念的规范化微服务套件。我们说明了 VarCat 如何通过采用 GA4GH 变异表示规范 (VRS) 减少可互操作变异相关证据的障碍。我们还利用 AMP/ASCO/CAP 指南介绍了标准化证据数据的临床可操作性。总之,我们的工作说明了 GA4GH 基因组知识标准如何推动数据互操作性和成功的知识交流,最终提高遗传疾病的理解能力并促进患者护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Genetics
Cancer Genetics ONCOLOGY-GENETICS & HEREDITY
CiteScore
3.20
自引率
5.30%
发文量
167
审稿时长
27 days
期刊介绍: The aim of Cancer Genetics is to publish high quality scientific papers on the cellular, genetic and molecular aspects of cancer, including cancer predisposition and clinical diagnostic applications. Specific areas of interest include descriptions of new chromosomal, molecular or epigenetic alterations in benign and malignant diseases; novel laboratory approaches for identification and characterization of chromosomal rearrangements or genomic alterations in cancer cells; correlation of genetic changes with pathology and clinical presentation; and the molecular genetics of cancer predisposition. To reach a basic science and clinical multidisciplinary audience, we welcome original full-length articles, reviews, meeting summaries, brief reports, and letters to the editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信