{"title":"Edge open packing: Complexity, algorithmic aspects, and bounds","authors":"Boštjan Brešar , Babak Samadi","doi":"10.1016/j.tcs.2024.114884","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph <em>G</em>, two edges <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are said to have a common edge <span><math><mi>e</mi><mo>≠</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> if <em>e</em> joins an endvertex of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to an endvertex of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. A subset <span><math><mi>B</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is an edge open packing set in <em>G</em> if no two edges of <em>B</em> have a common edge in <em>G</em>, and the maximum cardinality of such a set in <em>G</em> is called the edge open packing number, <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of <em>G</em>. In this paper, we prove that the decision version of the edge open packing number is NP-complete even when restricted to graphs with universal vertices, Eulerian bipartite graphs, and planar graphs with maximum degree 4, respectively. In contrast, we present a linear-time algorithm that computes the edge open packing number of a tree. We also resolve two problems posed in the seminal paper (Chelladurai et al. (2022) <span><span>[5]</span></span>). Notably, we characterize the graphs <em>G</em> that attain the upper bound <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>/</mo><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and provide lower and upper bounds for the edge-deleted subgraph of a graph and establish the corresponding realization result.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1022 ","pages":"Article 114884"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a graph G, two edges are said to have a common edge if e joins an endvertex of to an endvertex of . A subset is an edge open packing set in G if no two edges of B have a common edge in G, and the maximum cardinality of such a set in G is called the edge open packing number, , of G. In this paper, we prove that the decision version of the edge open packing number is NP-complete even when restricted to graphs with universal vertices, Eulerian bipartite graphs, and planar graphs with maximum degree 4, respectively. In contrast, we present a linear-time algorithm that computes the edge open packing number of a tree. We also resolve two problems posed in the seminal paper (Chelladurai et al. (2022) [5]). Notably, we characterize the graphs G that attain the upper bound , and provide lower and upper bounds for the edge-deleted subgraph of a graph and establish the corresponding realization result.
给定一个图 G,如果 e 连接 e1 的一个末端顶点和 e2 的一个末端顶点,则称两条边 e1,e2∈E(G) 有一条公共边 e≠e1,e2。如果 B 中没有两条边在 G 中具有公共边,则子集 B⊆E(G)是 G 中的边开包集,这样的集在 G 中的最大心数称为 G 的边开包数 ρeo(G)。相比之下,我们提出了一种计算树的边开包数的线性时间算法。我们还解决了开创性论文(Chelladurai 等人 (2022) [5])中提出的两个问题。值得注意的是,我们描述了达到上界ρeo(G)≤|E(G)|/δ(G)的图 G 的特征,并提供了图的删边子图的下界和上界,并建立了相应的实现结果。
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.