Edge open packing: Complexity, algorithmic aspects, and bounds

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Boštjan Brešar , Babak Samadi
{"title":"Edge open packing: Complexity, algorithmic aspects, and bounds","authors":"Boštjan Brešar ,&nbsp;Babak Samadi","doi":"10.1016/j.tcs.2024.114884","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph <em>G</em>, two edges <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are said to have a common edge <span><math><mi>e</mi><mo>≠</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> if <em>e</em> joins an endvertex of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to an endvertex of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. A subset <span><math><mi>B</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is an edge open packing set in <em>G</em> if no two edges of <em>B</em> have a common edge in <em>G</em>, and the maximum cardinality of such a set in <em>G</em> is called the edge open packing number, <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of <em>G</em>. In this paper, we prove that the decision version of the edge open packing number is NP-complete even when restricted to graphs with universal vertices, Eulerian bipartite graphs, and planar graphs with maximum degree 4, respectively. In contrast, we present a linear-time algorithm that computes the edge open packing number of a tree. We also resolve two problems posed in the seminal paper (Chelladurai et al. (2022) <span><span>[5]</span></span>). Notably, we characterize the graphs <em>G</em> that attain the upper bound <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>/</mo><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and provide lower and upper bounds for the edge-deleted subgraph of a graph and establish the corresponding realization result.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1022 ","pages":"Article 114884"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a graph G, two edges e1,e2E(G) are said to have a common edge ee1,e2 if e joins an endvertex of e1 to an endvertex of e2. A subset BE(G) is an edge open packing set in G if no two edges of B have a common edge in G, and the maximum cardinality of such a set in G is called the edge open packing number, ρeo(G), of G. In this paper, we prove that the decision version of the edge open packing number is NP-complete even when restricted to graphs with universal vertices, Eulerian bipartite graphs, and planar graphs with maximum degree 4, respectively. In contrast, we present a linear-time algorithm that computes the edge open packing number of a tree. We also resolve two problems posed in the seminal paper (Chelladurai et al. (2022) [5]). Notably, we characterize the graphs G that attain the upper bound ρeo(G)|E(G)|/δ(G), and provide lower and upper bounds for the edge-deleted subgraph of a graph and establish the corresponding realization result.
边缘开包:复杂性、算法方面和界限
给定一个图 G,如果 e 连接 e1 的一个末端顶点和 e2 的一个末端顶点,则称两条边 e1,e2∈E(G) 有一条公共边 e≠e1,e2。如果 B 中没有两条边在 G 中具有公共边,则子集 B⊆E(G)是 G 中的边开包集,这样的集在 G 中的最大心数称为 G 的边开包数 ρeo(G)。相比之下,我们提出了一种计算树的边开包数的线性时间算法。我们还解决了开创性论文(Chelladurai 等人 (2022) [5])中提出的两个问题。值得注意的是,我们描述了达到上界ρeo(G)≤|E(G)|/δ(G)的图 G 的特征,并提供了图的删边子图的下界和上界,并建立了相应的实现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信