Projective lag synchronization of fractional delayed memristive neural networks via event-based hybrid pinning impulsive controller

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Huiyu Wang , Shutang Liu , Xiang Wu , Wei Qiao , Jie Sun
{"title":"Projective lag synchronization of fractional delayed memristive neural networks via event-based hybrid pinning impulsive controller","authors":"Huiyu Wang ,&nbsp;Shutang Liu ,&nbsp;Xiang Wu ,&nbsp;Wei Qiao ,&nbsp;Jie Sun","doi":"10.1016/j.jfranklin.2024.107297","DOIUrl":null,"url":null,"abstract":"<div><div>This paper delves into the projective lag synchronization of Riemann–Liouville type fractional-order memristive neural networks accounting for jump mismatch. Recognizing the inherent inconsistencies in synchronizing traditional fractional-order memristive neural networks, we introduce a novel mathematical model that accommodates the jump mismatch phenomenon. A groundbreaking event-based hybrid pinning impulsive controller is then introduced, equipped with tailored event-triggering conditions, to elucidate the global asymptotic projective lag synchronization. Leveraging inequality principles and impulse analysis, a new Lyapunov functional is proposed, formulating sufficient conditions for synchronization while theoretically eliminating Zeno behavior in the controller. Notably, our approach substantially optimizes control overhead while fulfilling practical synchronization requisites. In addition, the obtained sufficient conditions can theoretically guide practical engineering applications of the network. Finally, a simulation example, emphasizing varied projective and lag factors, demonstrates our findings.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"361 18","pages":"Article 107297"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001600322400718X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper delves into the projective lag synchronization of Riemann–Liouville type fractional-order memristive neural networks accounting for jump mismatch. Recognizing the inherent inconsistencies in synchronizing traditional fractional-order memristive neural networks, we introduce a novel mathematical model that accommodates the jump mismatch phenomenon. A groundbreaking event-based hybrid pinning impulsive controller is then introduced, equipped with tailored event-triggering conditions, to elucidate the global asymptotic projective lag synchronization. Leveraging inequality principles and impulse analysis, a new Lyapunov functional is proposed, formulating sufficient conditions for synchronization while theoretically eliminating Zeno behavior in the controller. Notably, our approach substantially optimizes control overhead while fulfilling practical synchronization requisites. In addition, the obtained sufficient conditions can theoretically guide practical engineering applications of the network. Finally, a simulation example, emphasizing varied projective and lag factors, demonstrates our findings.
通过基于事件的混合针刺脉冲控制器实现分数延迟记忆神经网络的投影滞后同步
本文深入探讨了黎曼-刘维尔型分数阶忆苦思甜神经网络的投影滞后同步问题,并考虑了跳跃错配现象。我们认识到传统分数阶忆苦思甜神经网络在同步方面存在固有的不一致性,因此引入了一种新的数学模型,以适应跳跃失配现象。然后,我们引入了一种开创性的基于事件的混合针刺脉冲控制器,该控制器配备了量身定制的事件触发条件,以阐明全局渐近投影滞后同步。利用不等式原理和脉冲分析,提出了一种新的 Lyapunov 函数,为同步提出了充分条件,同时从理论上消除了控制器中的 Zeno 行为。值得注意的是,我们的方法在满足实际同步要求的同时,大大优化了控制开销。此外,所获得的充分条件还能从理论上指导网络的实际工程应用。最后,一个强调不同投影和滞后因素的仿真实例证明了我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信