Mutual Prompt Leaning for Vision Language Models

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sifan Long, Zhen Zhao, Junkun Yuan, Zichang Tan, Jiangjiang Liu, Jingyuan Feng, Shengsheng Wang, Jingdong Wang
{"title":"Mutual Prompt Leaning for Vision Language Models","authors":"Sifan Long, Zhen Zhao, Junkun Yuan, Zichang Tan, Jiangjiang Liu, Jingyuan Feng, Shengsheng Wang, Jingdong Wang","doi":"10.1007/s11263-024-02243-z","DOIUrl":null,"url":null,"abstract":"<p>Large pre-trained vision language models (VLMs) have demonstrated impressive representation learning capabilities, but their transferability across various downstream tasks heavily relies on prompt learning. Since VLMs consist of text and visual sub-branches, existing prompt approaches are mainly divided into text and visual prompts. Recent text prompt methods have achieved great performance by designing input-condition prompts that encompass both text and image domain knowledge. However, roughly incorporating the same image feature into each learnable text token may be unjustifiable, as it could result in learnable text prompts being concentrated on one or a subset of characteristics. In light of this, we propose a fine-grained text prompt (FTP) that decomposes the single global image features into several finer-grained semantics and incorporates them into corresponding text prompt tokens. On the other hand, current methods neglect valuable text semantic information when building the visual prompt. Furthermore, text information contains redundant and negative category semantics. To address this, we propose a text-reorganized visual prompt (TVP) that reorganizes the text descriptions of the current image to construct the visual prompt, guiding the image branch to attend to class-related representations. By leveraging both FTP and TVP, we enable mutual prompting between the text and visual modalities, unleashing their potential to tap into the representation capabilities of VLMs. Extensive experiments on 11 classification benchmarks show that our method surpasses existing methods by a large margin. In particular, our approach improves recent state-of-the-art CoCoOp by 4.79% on new classes and 3.88% on harmonic mean over eleven classification benchmarks.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"24 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02243-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Large pre-trained vision language models (VLMs) have demonstrated impressive representation learning capabilities, but their transferability across various downstream tasks heavily relies on prompt learning. Since VLMs consist of text and visual sub-branches, existing prompt approaches are mainly divided into text and visual prompts. Recent text prompt methods have achieved great performance by designing input-condition prompts that encompass both text and image domain knowledge. However, roughly incorporating the same image feature into each learnable text token may be unjustifiable, as it could result in learnable text prompts being concentrated on one or a subset of characteristics. In light of this, we propose a fine-grained text prompt (FTP) that decomposes the single global image features into several finer-grained semantics and incorporates them into corresponding text prompt tokens. On the other hand, current methods neglect valuable text semantic information when building the visual prompt. Furthermore, text information contains redundant and negative category semantics. To address this, we propose a text-reorganized visual prompt (TVP) that reorganizes the text descriptions of the current image to construct the visual prompt, guiding the image branch to attend to class-related representations. By leveraging both FTP and TVP, we enable mutual prompting between the text and visual modalities, unleashing their potential to tap into the representation capabilities of VLMs. Extensive experiments on 11 classification benchmarks show that our method surpasses existing methods by a large margin. In particular, our approach improves recent state-of-the-art CoCoOp by 4.79% on new classes and 3.88% on harmonic mean over eleven classification benchmarks.

Abstract Image

视觉语言模型的相互提示倾斜
大型预训练视觉语言模型(VLMs)已经展示了令人印象深刻的表征学习能力,但它们在各种下游任务中的可移植性在很大程度上依赖于提示学习。由于视觉语言模型由文本和视觉子分支组成,现有的提示方法主要分为文本提示和视觉提示。最近的文本提示方法通过设计包含文本和图像领域知识的输入条件提示,取得了很好的效果。然而,在每个可学习文本标记中粗略地加入相同的图像特征可能是不合理的,因为这可能导致可学习文本提示集中在一个或一个子集特征上。有鉴于此,我们提出了一种细粒度文本提示(FTP),它将单一的全局图像特征分解为多个更细粒度的语义,并将其纳入相应的文本提示标记中。另一方面,目前的方法在构建视觉提示时忽略了有价值的文本语义信息。此外,文本信息还包含冗余和负面的类别语义。为了解决这个问题,我们提出了一种文本重组视觉提示(TVP),通过重组当前图像的文本描述来构建视觉提示,引导图像分支关注与类别相关的表征。通过同时利用 FTP 和 TVP,我们实现了文本和视觉模态之间的相互提示,释放了它们挖掘 VLM 表征能力的潜力。在 11 个分类基准上进行的广泛实验表明,我们的方法大大超越了现有方法。特别是,我们的方法在新类别上比最近最先进的 CoCoOp 方法提高了 4.79%,在 11 个分类基准的谐波平均值上提高了 3.88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信